sched_prim.c   [plain text]


/*
 * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 * 
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 * 
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 * 
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 * 
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */
/*
 * @OSF_FREE_COPYRIGHT@
 */
/* 
 * Mach Operating System
 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
 * All Rights Reserved.
 * 
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 * 
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 * 
 * Carnegie Mellon requests users of this software to return to
 * 
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 * 
 * any improvements or extensions that they make and grant Carnegie Mellon
 * the rights to redistribute these changes.
 */
/*
 */
/*
 *	File:	sched_prim.c
 *	Author:	Avadis Tevanian, Jr.
 *	Date:	1986
 *
 *	Scheduling primitives
 *
 */

#include <debug.h>
#include <mach_kdb.h>

#include <ddb/db_output.h>

#include <mach/mach_types.h>
#include <mach/machine.h>
#include <mach/policy.h>
#include <mach/sync_policy.h>

#include <machine/machine_routines.h>
#include <machine/sched_param.h>
#include <machine/machine_cpu.h>

#include <kern/kern_types.h>
#include <kern/clock.h>
#include <kern/counters.h>
#include <kern/cpu_number.h>
#include <kern/cpu_data.h>
#include <kern/debug.h>
#include <kern/lock.h>
#include <kern/macro_help.h>
#include <kern/machine.h>
#include <kern/misc_protos.h>
#include <kern/processor.h>
#include <kern/queue.h>
#include <kern/sched.h>
#include <kern/sched_prim.h>
#include <kern/syscall_subr.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/wait_queue.h>

#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>

#include <sys/kdebug.h>

#include <kern/pms.h>

#define		DEFAULT_PREEMPTION_RATE		100		/* (1/s) */
int			default_preemption_rate = DEFAULT_PREEMPTION_RATE;

#define		MAX_UNSAFE_QUANTA			800
int			max_unsafe_quanta = MAX_UNSAFE_QUANTA;

#define		MAX_POLL_QUANTA				2
int			max_poll_quanta = MAX_POLL_QUANTA;

#define		SCHED_POLL_YIELD_SHIFT		4		/* 1/16 */
int			sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT;

uint64_t	max_unsafe_computation;
uint32_t	sched_safe_duration;
uint64_t	max_poll_computation;

uint32_t	std_quantum;
uint32_t	min_std_quantum;

uint32_t	std_quantum_us;

uint32_t	max_rt_quantum;
uint32_t	min_rt_quantum;

uint32_t	sched_cswtime;

static uint32_t		delay_idle_limit, delay_idle_spin;
static processor_t	delay_idle(
						processor_t		processor,
						thread_t		self);

unsigned	sched_tick;
uint32_t	sched_tick_interval;

uint32_t	sched_pri_shift;

/* Forwards */
void		wait_queues_init(void);

static void		load_shift_init(void);

static thread_t	choose_thread(
					processor_set_t		pset,
					processor_t			processor);

static void		thread_update_scan(void);

#if	DEBUG
static
boolean_t	thread_runnable(
				thread_t		thread);

#endif	/*DEBUG*/


/*
 *	State machine
 *
 * states are combinations of:
 *  R	running
 *  W	waiting (or on wait queue)
 *  N	non-interruptible
 *  O	swapped out
 *  I	being swapped in
 *
 * init	action 
 *	assert_wait thread_block    clear_wait 		swapout	swapin
 *
 * R	RW, RWN	    R;   setrun	    -	       		-
 * RN	RWN	    RN;  setrun	    -	       		-
 *
 * RW		    W		    R	       		-
 * RWN		    WN		    RN	       		-
 *
 * W				    R;   setrun		WO
 * WN				    RN;  setrun		-
 *
 * RO				    -			-	R
 *
 */

/*
 *	Waiting protocols and implementation:
 *
 *	Each thread may be waiting for exactly one event; this event
 *	is set using assert_wait().  That thread may be awakened either
 *	by performing a thread_wakeup_prim() on its event,
 *	or by directly waking that thread up with clear_wait().
 *
 *	The implementation of wait events uses a hash table.  Each
 *	bucket is queue of threads having the same hash function
 *	value; the chain for the queue (linked list) is the run queue
 *	field.  [It is not possible to be waiting and runnable at the
 *	same time.]
 *
 *	Locks on both the thread and on the hash buckets govern the
 *	wait event field and the queue chain field.  Because wakeup
 *	operations only have the event as an argument, the event hash
 *	bucket must be locked before any thread.
 *
 *	Scheduling operations may also occur at interrupt level; therefore,
 *	interrupts below splsched() must be prevented when holding
 *	thread or hash bucket locks.
 *
 *	The wait event hash table declarations are as follows:
 */

#define NUMQUEUES	59

struct wait_queue wait_queues[NUMQUEUES];

#define wait_hash(event) \
	((((int)(event) < 0)? ~(int)(event): (int)(event)) % NUMQUEUES)

int8_t		sched_load_shifts[NRQS];

void
sched_init(void)
{
	/*
	 * Calculate the timeslicing quantum
	 * in us.
	 */
	if (default_preemption_rate < 1)
		default_preemption_rate = DEFAULT_PREEMPTION_RATE;
	std_quantum_us = (1000 * 1000) / default_preemption_rate;

	printf("standard timeslicing quantum is %d us\n", std_quantum_us);

	sched_safe_duration = (2 * max_unsafe_quanta / default_preemption_rate) *
											(1 << SCHED_TICK_SHIFT);

	wait_queues_init();
	load_shift_init();
	pset_init(&default_pset);
	sched_tick = 0;
	ast_init();
}

void
sched_timebase_init(void)
{
	uint64_t	abstime;
	uint32_t	shift;

	/* standard timeslicing quantum */
	clock_interval_to_absolutetime_interval(
							std_quantum_us, NSEC_PER_USEC, &abstime);
	assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
	std_quantum = abstime;

	/* smallest remaining quantum (250 us) */
	clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime);
	assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
	min_std_quantum = abstime;

	/* smallest rt computaton (50 us) */
	clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime);
	assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
	min_rt_quantum = abstime;

	/* maximum rt computation (50 ms) */
	clock_interval_to_absolutetime_interval(
							50, 1000*NSEC_PER_USEC, &abstime);
	assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
	max_rt_quantum = abstime;

	/* scheduler tick interval */
	clock_interval_to_absolutetime_interval(USEC_PER_SEC >> SCHED_TICK_SHIFT,
													NSEC_PER_USEC, &abstime);
	assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
	sched_tick_interval = abstime;

	/*
	 * Compute conversion factor from usage to
	 * timesharing priorities with 5/8 ** n aging.
	 */
	abstime = (abstime * 5) / 3;
	for (shift = 0; abstime > BASEPRI_DEFAULT; ++shift)
		abstime >>= 1;
	sched_pri_shift = shift;

	max_unsafe_computation = max_unsafe_quanta * std_quantum;
	max_poll_computation = max_poll_quanta * std_quantum;

	/* delay idle constant(s) (60, 1 us) */
	clock_interval_to_absolutetime_interval(60, NSEC_PER_USEC, &abstime);
	assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
	delay_idle_limit = abstime;

	clock_interval_to_absolutetime_interval(1, NSEC_PER_USEC, &abstime);
	assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
	delay_idle_spin = abstime;
}

void
wait_queues_init(void)
{
	register int	i;

	for (i = 0; i < NUMQUEUES; i++) {
		wait_queue_init(&wait_queues[i], SYNC_POLICY_FIFO);
	}
}

/*
 * Set up values for timeshare
 * loading factors.
 */
static void
load_shift_init(void)
{
	int8_t		k, *p = sched_load_shifts;
	uint32_t	i, j;

	*p++ = INT8_MIN; *p++ = 0;

	for (i = j = 2, k = 1; i < NRQS; ++k) {
		for (j <<= 1; i < j; ++i)
			*p++ = k;
	}
}

/*
 *	Thread wait timer expiration.
 */
void
thread_timer_expire(
	void			*p0,
	__unused void	*p1)
{
	thread_t		thread = p0;
	spl_t			s;

	s = splsched();
	thread_lock(thread);
	if (--thread->wait_timer_active == 0) {
		if (thread->wait_timer_is_set) {
			thread->wait_timer_is_set = FALSE;
			clear_wait_internal(thread, THREAD_TIMED_OUT);
		}
	}
	thread_unlock(thread);
	splx(s);
}

/*
 *	thread_set_timer:
 *
 *	Set a timer for the current thread, if the thread
 *	is ready to wait.  Must be called between assert_wait()
 *	and thread_block().
 */
void
thread_set_timer(
	uint32_t		interval,
	uint32_t		scale_factor)
{
	thread_t		thread = current_thread();
	uint64_t		deadline;
	spl_t			s;

	s = splsched();
	thread_lock(thread);
	if ((thread->state & TH_WAIT) != 0) {
		clock_interval_to_deadline(interval, scale_factor, &deadline);
		if (!timer_call_enter(&thread->wait_timer, deadline))
			thread->wait_timer_active++;
		thread->wait_timer_is_set = TRUE;
	}
	thread_unlock(thread);
	splx(s);
}

void
thread_set_timer_deadline(
	uint64_t		deadline)
{
	thread_t		thread = current_thread();
	spl_t			s;

	s = splsched();
	thread_lock(thread);
	if ((thread->state & TH_WAIT) != 0) {
		if (!timer_call_enter(&thread->wait_timer, deadline))
			thread->wait_timer_active++;
		thread->wait_timer_is_set = TRUE;
	}
	thread_unlock(thread);
	splx(s);
}

void
thread_cancel_timer(void)
{
	thread_t		thread = current_thread();
	spl_t			s;

	s = splsched();
	thread_lock(thread);
	if (thread->wait_timer_is_set) {
		if (timer_call_cancel(&thread->wait_timer))
			thread->wait_timer_active--;
		thread->wait_timer_is_set = FALSE;
	}
	thread_unlock(thread);
	splx(s);
}

/*
 *	thread_unblock:
 *
 *	Unblock thread on wake up.
 *
 *	Returns TRUE if the thread is still running.
 *
 *	Thread must be locked.
 */
boolean_t
thread_unblock(
	thread_t		thread,
	wait_result_t	wresult)
{
	boolean_t		result = FALSE;

	/*
	 * Set wait_result.
	 */
	thread->wait_result = wresult;

	/*
	 * Cancel pending wait timer.
	 */
	if (thread->wait_timer_is_set) {
		if (timer_call_cancel(&thread->wait_timer))
			thread->wait_timer_active--;
		thread->wait_timer_is_set = FALSE;
	}

	/*
	 * Update scheduling state.
	 */
	thread->state &= ~(TH_WAIT|TH_UNINT);

	if (!(thread->state & TH_RUN)) {
		thread->state |= TH_RUN;

		/*
		 * Mark unblocked if call out.
		 */
		if (thread->options & TH_OPT_CALLOUT)
			call_thread_unblock();

		/*
		 * Update pset run counts.
		 */
		pset_run_incr(thread->processor_set);
		if (thread->sched_mode & TH_MODE_TIMESHARE)
			pset_share_incr(thread->processor_set);
	}
	else
		result = TRUE;

	/*
	 * Calculate deadline for real-time threads.
	 */
	if (thread->sched_mode & TH_MODE_REALTIME) {
		thread->realtime.deadline = mach_absolute_time();
		thread->realtime.deadline += thread->realtime.constraint;
	}

	/*
	 * Clear old quantum, fail-safe computation, etc.
	 */
	thread->current_quantum = 0;
	thread->computation_metered = 0;
	thread->reason = AST_NONE;

	KERNEL_DEBUG_CONSTANT(
		MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE,
					(int)thread, (int)thread->sched_pri, 0, 0, 0);

	return (result);
}

/*
 *	Routine:	thread_go
 *	Purpose:
 *		Unblock and dispatch thread.
 *	Conditions:
 *		thread lock held, IPC locks may be held.
 *		thread must have been pulled from wait queue under same lock hold.
 *  Returns:
 *		KERN_SUCCESS - Thread was set running
 *		KERN_NOT_WAITING - Thread was not waiting
 */
kern_return_t
thread_go(
	thread_t		thread,
	wait_result_t	wresult)
{
	assert(thread->at_safe_point == FALSE);
	assert(thread->wait_event == NO_EVENT64);
	assert(thread->wait_queue == WAIT_QUEUE_NULL);

	if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT) {
		if (!thread_unblock(thread, wresult))
			thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);

		return (KERN_SUCCESS);
	}

	return (KERN_NOT_WAITING);
}

/*
 *	Routine:	thread_mark_wait_locked
 *	Purpose:
 *		Mark a thread as waiting.  If, given the circumstances,
 *		it doesn't want to wait (i.e. already aborted), then
 *		indicate that in the return value.
 *	Conditions:
 *		at splsched() and thread is locked.
 */
__private_extern__
wait_result_t
thread_mark_wait_locked(
	thread_t			thread,
	wait_interrupt_t 	interruptible)
{
	boolean_t		at_safe_point;

	/*
	 *	The thread may have certain types of interrupts/aborts masked
	 *	off.  Even if the wait location says these types of interrupts
	 *	are OK, we have to honor mask settings (outer-scoped code may
	 *	not be able to handle aborts at the moment).
	 */
	if (interruptible > (thread->options & TH_OPT_INTMASK))
		interruptible = thread->options & TH_OPT_INTMASK;

	at_safe_point = (interruptible == THREAD_ABORTSAFE);

	if (	interruptible == THREAD_UNINT			||
			!(thread->state & TH_ABORT)				||
			(!at_safe_point &&
			 (thread->state & TH_ABORT_SAFELY))		) {
		thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT);
		thread->at_safe_point = at_safe_point;
		return (thread->wait_result = THREAD_WAITING);
	}
	else
	if (thread->state & TH_ABORT_SAFELY)
		thread->state &= ~(TH_ABORT|TH_ABORT_SAFELY);

	return (thread->wait_result = THREAD_INTERRUPTED);
}

/*
 *	Routine:	thread_interrupt_level
 *	Purpose:
 *	        Set the maximum interruptible state for the
 *		current thread.  The effective value of any
 *		interruptible flag passed into assert_wait
 *		will never exceed this.
 *
 *		Useful for code that must not be interrupted,
 *		but which calls code that doesn't know that.
 *	Returns:
 *		The old interrupt level for the thread.
 */
__private_extern__ 
wait_interrupt_t
thread_interrupt_level(
	wait_interrupt_t new_level)
{
	thread_t thread = current_thread();
	wait_interrupt_t result = thread->options & TH_OPT_INTMASK;

	thread->options = (thread->options & ~TH_OPT_INTMASK) | (new_level & TH_OPT_INTMASK);

	return result;
}

/*
 * Check to see if an assert wait is possible, without actually doing one.
 * This is used by debug code in locks and elsewhere to verify that it is
 * always OK to block when trying to take a blocking lock (since waiting
 * for the actual assert_wait to catch the case may make it hard to detect
 * this case.
 */
boolean_t
assert_wait_possible(void)
{

	thread_t thread;

#if	DEBUG
	if(debug_mode) return TRUE;		/* Always succeed in debug mode */
#endif
	
	thread = current_thread();

	return (thread == NULL || wait_queue_assert_possible(thread));
}

/*
 *	assert_wait:
 *
 *	Assert that the current thread is about to go to
 *	sleep until the specified event occurs.
 */
wait_result_t
assert_wait(
	event_t				event,
	wait_interrupt_t	interruptible)
{
	register wait_queue_t	wq;
	register int		index;

	assert(event != NO_EVENT);

	index = wait_hash(event);
	wq = &wait_queues[index];
	return wait_queue_assert_wait(wq, event, interruptible, 0);
}

wait_result_t
assert_wait_timeout(
	event_t				event,
	wait_interrupt_t	interruptible,
	uint32_t			interval,
	uint32_t			scale_factor)
{
	thread_t			thread = current_thread();
	wait_result_t		wresult;
	wait_queue_t		wqueue;
	uint64_t			deadline;
	spl_t				s;

	assert(event != NO_EVENT);
	wqueue = &wait_queues[wait_hash(event)];

	s = splsched();
	wait_queue_lock(wqueue);
	thread_lock(thread);

	clock_interval_to_deadline(interval, scale_factor, &deadline);
	wresult = wait_queue_assert_wait64_locked(wqueue, (uint32_t)event,
													interruptible, deadline, thread);

	thread_unlock(thread);
	wait_queue_unlock(wqueue);
	splx(s);

	return (wresult);
}

wait_result_t
assert_wait_deadline(
	event_t				event,
	wait_interrupt_t	interruptible,
	uint64_t			deadline)
{
	thread_t			thread = current_thread();
	wait_result_t		wresult;
	wait_queue_t		wqueue;
	spl_t				s;

	assert(event != NO_EVENT);
	wqueue = &wait_queues[wait_hash(event)];

	s = splsched();
	wait_queue_lock(wqueue);
	thread_lock(thread);

	wresult = wait_queue_assert_wait64_locked(wqueue, (uint32_t)event,
													interruptible, deadline, thread);

	thread_unlock(thread);
	wait_queue_unlock(wqueue);
	splx(s);

	return (wresult);
}

/*
 *	thread_sleep_fast_usimple_lock:
 *
 *	Cause the current thread to wait until the specified event
 *	occurs.  The specified simple_lock is unlocked before releasing
 *	the cpu and re-acquired as part of waking up.
 *
 *	This is the simple lock sleep interface for components that use a
 *	faster version of simple_lock() than is provided by usimple_lock().
 */
__private_extern__ wait_result_t
thread_sleep_fast_usimple_lock(
	event_t			event,
	simple_lock_t		lock,
	wait_interrupt_t	interruptible)
{
	wait_result_t res;

	res = assert_wait(event, interruptible);
	if (res == THREAD_WAITING) {
		simple_unlock(lock);
		res = thread_block(THREAD_CONTINUE_NULL);
		simple_lock(lock);
	}
	return res;
}


/*
 *	thread_sleep_usimple_lock:
 *
 *	Cause the current thread to wait until the specified event
 *	occurs.  The specified usimple_lock is unlocked before releasing
 *	the cpu and re-acquired as part of waking up.
 *
 *	This is the simple lock sleep interface for components where
 *	simple_lock() is defined in terms of usimple_lock().
 */
wait_result_t
thread_sleep_usimple_lock(
	event_t			event,
	usimple_lock_t		lock,
	wait_interrupt_t	interruptible)
{
	wait_result_t res;

	res = assert_wait(event, interruptible);
	if (res == THREAD_WAITING) {
		usimple_unlock(lock);
		res = thread_block(THREAD_CONTINUE_NULL);
		usimple_lock(lock);
	}
	return res;
}

/*
 *	thread_sleep_mutex:
 *
 *	Cause the current thread to wait until the specified event
 *	occurs.  The specified mutex is unlocked before releasing
 *	the cpu. The mutex will be re-acquired before returning.
 *
 *	JMM - Add hint to make sure mutex is available before rousting
 */
wait_result_t
thread_sleep_mutex(
	event_t			event,
	mutex_t			*mutex,
	wait_interrupt_t interruptible)
{
	wait_result_t	res;

	res = assert_wait(event, interruptible);
	if (res == THREAD_WAITING) {
		mutex_unlock(mutex);
		res = thread_block(THREAD_CONTINUE_NULL);
		mutex_lock(mutex);
	}
	return res;
}
  
/*
 *	thread_sleep_mutex_deadline:
 *
 *	Cause the current thread to wait until the specified event
 *	(or deadline) occurs.  The specified mutex is unlocked before
 *	releasing the cpu. The mutex will be re-acquired before returning.
 */
wait_result_t
thread_sleep_mutex_deadline(
	event_t			event,
	mutex_t			*mutex,
	uint64_t		deadline,
	wait_interrupt_t interruptible)
{
	wait_result_t	res;

	res = assert_wait_deadline(event, interruptible, deadline);
	if (res == THREAD_WAITING) {
		mutex_unlock(mutex);
		res = thread_block(THREAD_CONTINUE_NULL);
		mutex_lock(mutex);
	}
	return res;
}

/*
 *	thread_sleep_lock_write:
 *
 *	Cause the current thread to wait until the specified event
 *	occurs.  The specified (write) lock is unlocked before releasing
 *	the cpu. The (write) lock will be re-acquired before returning.
 */
wait_result_t
thread_sleep_lock_write(
	event_t			event,
	lock_t			*lock,
	wait_interrupt_t interruptible)
{
	wait_result_t	res;

	res = assert_wait(event, interruptible);
	if (res == THREAD_WAITING) {
		lock_write_done(lock);
		res = thread_block(THREAD_CONTINUE_NULL);
		lock_write(lock);
	}
	return res;
}

/*
 * thread_stop:
 *
 * Force a preemption point for a thread and wait
 * for it to stop running.  Arbitrates access among
 * multiple stop requests. (released by unstop)
 *
 * The thread must enter a wait state and stop via a
 * separate means.
 *
 * Returns FALSE if interrupted.
 */
boolean_t
thread_stop(
	thread_t		thread)
{
	wait_result_t	wresult;
	spl_t			s;

	s = splsched();
	wake_lock(thread);

	while (thread->state & TH_SUSP) {
		thread->wake_active = TRUE;
		wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE);
		wake_unlock(thread);
		splx(s);

		if (wresult == THREAD_WAITING)
			wresult = thread_block(THREAD_CONTINUE_NULL);

		if (wresult != THREAD_AWAKENED)
			return (FALSE);

		s = splsched();
		wake_lock(thread);
	}

	thread_lock(thread);
	thread->state |= TH_SUSP;

	while (thread->state & TH_RUN) {
		processor_t		processor = thread->last_processor;

		if (	processor != PROCESSOR_NULL					&&
				processor->state == PROCESSOR_RUNNING		&&
				processor->active_thread == thread			)
			cause_ast_check(processor);
		thread_unlock(thread);

		thread->wake_active = TRUE;
		wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE);
		wake_unlock(thread);
		splx(s);

		if (wresult == THREAD_WAITING)
			wresult = thread_block(THREAD_CONTINUE_NULL);

		if (wresult != THREAD_AWAKENED) {
			thread_unstop(thread);
			return (FALSE);
		}

		s = splsched();
		wake_lock(thread);
		thread_lock(thread);
	}

	thread_unlock(thread);
	wake_unlock(thread);
	splx(s);

	return (TRUE);
}

/*
 * thread_unstop:
 *
 * Release a previous stop request and set
 * the thread running if appropriate.
 *
 * Use only after a successful stop operation.
 */
void
thread_unstop(
	thread_t	thread)
{
	spl_t		s = splsched();

	wake_lock(thread);
	thread_lock(thread);

	if ((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) == TH_SUSP) {
		thread->state &= ~TH_SUSP;
		thread_unblock(thread, THREAD_AWAKENED);

		thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
	}
	else
	if (thread->state & TH_SUSP) {
		thread->state &= ~TH_SUSP;

		if (thread->wake_active) {
			thread->wake_active = FALSE;
			thread_unlock(thread);
			wake_unlock(thread);
			splx(s);

			thread_wakeup(&thread->wake_active);
			return;
		}
	}

	thread_unlock(thread);
	wake_unlock(thread);
	splx(s);
}

/*
 * thread_wait:
 *
 * Wait for a thread to stop running. (non-interruptible)
 *
 */
void
thread_wait(
	thread_t		thread)
{
	wait_result_t	wresult;
	spl_t			s = splsched();

	wake_lock(thread);
	thread_lock(thread);

	while (thread->state & TH_RUN) {
		processor_t		processor = thread->last_processor;

		if (	processor != PROCESSOR_NULL					&&
				processor->state == PROCESSOR_RUNNING		&&
				processor->active_thread == thread			)
			cause_ast_check(processor);
		thread_unlock(thread);

		thread->wake_active = TRUE;
		wresult = assert_wait(&thread->wake_active, THREAD_UNINT);
		wake_unlock(thread);
		splx(s);

		if (wresult == THREAD_WAITING)
			thread_block(THREAD_CONTINUE_NULL);

		s = splsched();
		wake_lock(thread);
		thread_lock(thread);
	}

	thread_unlock(thread);
	wake_unlock(thread);
	splx(s);
}

/*
 *	Routine: clear_wait_internal
 *
 *		Clear the wait condition for the specified thread.
 *		Start the thread executing if that is appropriate.
 *	Arguments:
 *		thread		thread to awaken
 *		result		Wakeup result the thread should see
 *	Conditions:
 *		At splsched
 *		the thread is locked.
 *	Returns:
 *		KERN_SUCCESS		thread was rousted out a wait
 *		KERN_FAILURE		thread was waiting but could not be rousted
 *		KERN_NOT_WAITING	thread was not waiting
 */
__private_extern__ kern_return_t
clear_wait_internal(
	thread_t		thread,
	wait_result_t	wresult)
{
	wait_queue_t	wq = thread->wait_queue;
	int				i = LockTimeOut;

	do {
		if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT))
			return (KERN_FAILURE);

		if (wq != WAIT_QUEUE_NULL) {
			if (wait_queue_lock_try(wq)) {
				wait_queue_pull_thread_locked(wq, thread, TRUE);
				/* wait queue unlocked, thread still locked */
			}
			else {
				thread_unlock(thread);
				delay(1);

				thread_lock(thread);
				if (wq != thread->wait_queue)
					return (KERN_NOT_WAITING);

				continue;
			}
		}

		return (thread_go(thread, wresult));
	} while (--i > 0);

	panic("clear_wait_internal: deadlock: thread=0x%x, wq=0x%x, cpu=%d\n",
		  thread, wq, cpu_number());

	return (KERN_FAILURE);
}


/*
 *	clear_wait:
 *
 *	Clear the wait condition for the specified thread.  Start the thread
 *	executing if that is appropriate.
 *
 *	parameters:
 *	  thread		thread to awaken
 *	  result		Wakeup result the thread should see
 */
kern_return_t
clear_wait(
	thread_t		thread,
	wait_result_t	result)
{
	kern_return_t ret;
	spl_t		s;

	s = splsched();
	thread_lock(thread);
	ret = clear_wait_internal(thread, result);
	thread_unlock(thread);
	splx(s);
	return ret;
}


/*
 *	thread_wakeup_prim:
 *
 *	Common routine for thread_wakeup, thread_wakeup_with_result,
 *	and thread_wakeup_one.
 *
 */
kern_return_t
thread_wakeup_prim(
	event_t			event,
	boolean_t		one_thread,
	wait_result_t	result)
{
	register wait_queue_t	wq;
	register int			index;

	index = wait_hash(event);
	wq = &wait_queues[index];
	if (one_thread)
	    return (wait_queue_wakeup_one(wq, event, result));
	else
	    return (wait_queue_wakeup_all(wq, event, result));
}

/*
 *	thread_bind:
 *
 *	Force a thread to execute on the specified processor.
 *
 *	Returns the previous binding.  PROCESSOR_NULL means
 *	not bound.
 *
 *	XXX - DO NOT export this to users - XXX
 */
processor_t
thread_bind(
	register thread_t	thread,
	processor_t			processor)
{
	processor_t		prev;
	run_queue_t		runq = RUN_QUEUE_NULL;
	spl_t			s;

	s = splsched();
	thread_lock(thread);
	prev = thread->bound_processor;
	if (prev != PROCESSOR_NULL)
		runq = run_queue_remove(thread);

	thread->bound_processor = processor;

	if (runq != RUN_QUEUE_NULL)
		thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
	thread_unlock(thread);
	splx(s);

	return (prev);
}

struct {
	uint32_t	idle_pset_last,
				idle_pset_any,
				idle_bound;

	uint32_t	pset_self,
				pset_last,
				pset_other,
				bound_self,
				bound_other;

	uint32_t	realtime_self,
				realtime_last,
				realtime_other;

	uint32_t	missed_realtime,
				missed_other;
} dispatch_counts;

/*
 *	Select a thread for the current processor to run.
 *
 *	May select the current thread, which must be locked.
 */
thread_t
thread_select(
	register processor_t	processor)
{
	register thread_t		thread;
	processor_set_t			pset;
	boolean_t				other_runnable;

	/*
	 *	Check for other non-idle runnable threads.
	 */
	pset = processor->processor_set;
	thread = processor->active_thread;

	/* Update the thread's priority */
	if (thread->sched_stamp != sched_tick)
		update_priority(thread);

	processor->current_pri = thread->sched_pri;

	simple_lock(&pset->sched_lock);

	other_runnable = processor->runq.count > 0 || pset->runq.count > 0;

	if (	thread->state == TH_RUN							&&
			thread->processor_set == pset					&&
			(thread->bound_processor == PROCESSOR_NULL	||
			 thread->bound_processor == processor)				) {
		if (	thread->sched_pri >= BASEPRI_RTQUEUES	&&
						first_timeslice(processor)			) {
			if (pset->runq.highq >= BASEPRI_RTQUEUES) {
				register run_queue_t	runq = &pset->runq;
				register queue_t		q;

				q = runq->queues + runq->highq;
				if (((thread_t)q->next)->realtime.deadline <
												processor->deadline) {
					thread = (thread_t)q->next;
					((queue_entry_t)thread)->next->prev = q;
					q->next = ((queue_entry_t)thread)->next;
					thread->runq = RUN_QUEUE_NULL;
					assert(thread->sched_mode & TH_MODE_PREEMPT);
					runq->count--; runq->urgency--;
					if (queue_empty(q)) {
						if (runq->highq != IDLEPRI)
							clrbit(MAXPRI - runq->highq, runq->bitmap);
						runq->highq = MAXPRI - ffsbit(runq->bitmap);
					}
				}
			}

			processor->deadline = thread->realtime.deadline;

			simple_unlock(&pset->sched_lock);

			return (thread);
		}

		if (	(!other_runnable							||
				 (processor->runq.highq < thread->sched_pri		&&
				  pset->runq.highq < thread->sched_pri))			) {

			/* I am the highest priority runnable (non-idle) thread */

			processor->deadline = UINT64_MAX;

			simple_unlock(&pset->sched_lock);

			return (thread);
		}
	}

	if (other_runnable)
		thread = choose_thread(pset, processor);
	else {
		/*
		 *	Nothing is runnable, so set this processor idle if it
		 *	was running.  Return its idle thread.
		 */
		if (processor->state == PROCESSOR_RUNNING) {
			remqueue(&pset->active_queue, (queue_entry_t)processor);
			processor->state = PROCESSOR_IDLE;

			enqueue_tail(&pset->idle_queue, (queue_entry_t)processor);
			pset->idle_count++;
		}

		processor->deadline = UINT64_MAX;

		thread = processor->idle_thread;
	}

	simple_unlock(&pset->sched_lock);

	return (thread);
}

/*
 *	Perform a context switch and start executing the new thread.
 *
 *	Returns FALSE on failure, and the thread is re-dispatched.
 *
 *	Called at splsched.
 */

#define funnel_release_check(thread, debug)				\
MACRO_BEGIN												\
	if ((thread)->funnel_state & TH_FN_OWNED) {			\
		(thread)->funnel_state = TH_FN_REFUNNEL;		\
		KERNEL_DEBUG(0x603242c | DBG_FUNC_NONE,			\
			(thread)->funnel_lock, (debug), 0, 0, 0);	\
		funnel_unlock((thread)->funnel_lock);			\
	}													\
MACRO_END

#define funnel_refunnel_check(thread, debug)				\
MACRO_BEGIN													\
	if ((thread)->funnel_state & TH_FN_REFUNNEL) {			\
		kern_return_t	result = (thread)->wait_result;		\
															\
		(thread)->funnel_state = 0;							\
		KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE,				\
			(thread)->funnel_lock, (debug), 0, 0, 0);		\
		funnel_lock((thread)->funnel_lock);					\
		KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE,				\
			(thread)->funnel_lock, (debug), 0, 0, 0);		\
		(thread)->funnel_state = TH_FN_OWNED;				\
		(thread)->wait_result = result;						\
	}														\
MACRO_END

boolean_t
thread_invoke(
	register thread_t	old_thread,
	register thread_t	new_thread,
	ast_t				reason)
{
	thread_continue_t	new_cont, continuation = old_thread->continuation;
	void				*new_param, *parameter = old_thread->parameter;
	processor_t			processor;
	thread_t			prev_thread;

	if (get_preemption_level() != 0)
		panic("thread_invoke: preemption_level %d\n",
								get_preemption_level());

	assert(old_thread == current_thread());

	/*
	 * Mark thread interruptible.
	 */
	thread_lock(new_thread);
	new_thread->state &= ~TH_UNINT;

	assert(thread_runnable(new_thread));

	/*
	 * Allow time constraint threads to hang onto
	 * a stack.
	 */
	if (	(old_thread->sched_mode & TH_MODE_REALTIME)		&&
					!old_thread->reserved_stack				) {
		old_thread->reserved_stack = old_thread->kernel_stack;
	}

	if (continuation != NULL) {
		if (!new_thread->kernel_stack) {
			/*
			 * If the old thread is using a privileged stack,
			 * check to see whether we can exchange it with
			 * that of the new thread.
			 */
			if (	old_thread->kernel_stack == old_thread->reserved_stack	&&
							!new_thread->reserved_stack)
				goto need_stack;

			/*
			 * Context switch by performing a stack handoff.
			 */
			new_cont = new_thread->continuation;
			new_thread->continuation = NULL;
			new_param = new_thread->parameter;
			new_thread->parameter = NULL;

			processor = current_processor();
			processor->active_thread = new_thread;
			processor->current_pri = new_thread->sched_pri;
			new_thread->last_processor = processor;
			ast_context(new_thread);
			thread_unlock(new_thread);
		
			current_task()->csw++;

			old_thread->reason = reason;

			processor->last_dispatch = mach_absolute_time();
			timer_event((uint32_t)processor->last_dispatch,
										&new_thread->system_timer);
	   
			thread_done(old_thread, new_thread, processor);

			machine_stack_handoff(old_thread, new_thread);

			thread_begin(new_thread, processor);

			/*
			 * Now dispatch the old thread.
			 */
			thread_dispatch(old_thread);

			counter_always(c_thread_invoke_hits++);

			funnel_refunnel_check(new_thread, 2);
			(void) spllo();

			assert(new_cont);
			call_continuation(new_cont, new_param, new_thread->wait_result);
			/*NOTREACHED*/
		}
		else
		if (new_thread == old_thread) {
			/* same thread but with continuation */
			counter(++c_thread_invoke_same);
			thread_unlock(new_thread);

			funnel_refunnel_check(new_thread, 3);
			(void) spllo();

			call_continuation(continuation, parameter, new_thread->wait_result);
			/*NOTREACHED*/
		}
	}
	else {
		/*
		 * Check that the new thread has a stack
		 */
		if (!new_thread->kernel_stack) {
need_stack:
			if (!stack_alloc_try(new_thread)) {
				counter_always(c_thread_invoke_misses++);
				thread_unlock(new_thread);
				thread_stack_enqueue(new_thread);
				return (FALSE);
			}
		}
		else
		if (new_thread == old_thread) {
			counter(++c_thread_invoke_same);
			thread_unlock(new_thread);
			return (TRUE);
		}
	}

	/*
	 * Context switch by full context save.
	 */
	processor = current_processor();
	processor->active_thread = new_thread;
	processor->current_pri = new_thread->sched_pri;
	new_thread->last_processor = processor;
	ast_context(new_thread);
	assert(thread_runnable(new_thread));
	thread_unlock(new_thread);

	counter_always(c_thread_invoke_csw++);
	current_task()->csw++;

	assert(old_thread->runq == RUN_QUEUE_NULL);
	old_thread->reason = reason;

	processor->last_dispatch = mach_absolute_time();
	timer_event((uint32_t)processor->last_dispatch, &new_thread->system_timer);

	thread_done(old_thread, new_thread, processor);

	/*
	 * This is where we actually switch register context,
	 * and address space if required.  Control will not
	 * return here immediately.
	 */
	prev_thread = machine_switch_context(old_thread, continuation, new_thread);

	/*
	 * We are still old_thread, possibly on a different processor,
	 * and new_thread is now stale.
	 */
	thread_begin(old_thread, old_thread->last_processor);

	/*
	 * Now dispatch the thread which resumed us.
	 */
	thread_dispatch(prev_thread);

	if (continuation) {
		funnel_refunnel_check(old_thread, 3);
		(void) spllo();

		call_continuation(continuation, parameter, old_thread->wait_result);
		/*NOTREACHED*/
	}

	return (TRUE);
}

/*
 *	thread_done:
 *
 *	Perform calculations for thread
 *	finishing execution on the current processor.
 *
 *	Called at splsched.
 */
void
thread_done(
	thread_t			old_thread,
	thread_t			new_thread,
	processor_t			processor)
{
	if (!(old_thread->state & TH_IDLE)) {
		/*
		 * Compute remainder of current quantum.
		 */
		if (	first_timeslice(processor)							&&
				processor->quantum_end > processor->last_dispatch		)
			old_thread->current_quantum =
					(processor->quantum_end - processor->last_dispatch);
		else
			old_thread->current_quantum = 0;

		if (old_thread->sched_mode & TH_MODE_REALTIME) {
			/*
			 * Cancel the deadline if the thread has
			 * consumed the entire quantum.
			 */
			if (old_thread->current_quantum == 0) {
				old_thread->realtime.deadline = UINT64_MAX;
				old_thread->reason |= AST_QUANTUM;
			}
		}
		else {
			/*
			 * For non-realtime threads treat a tiny
			 * remaining quantum as an expired quantum
			 * but include what's left next time.
			 */
			if (old_thread->current_quantum < min_std_quantum) {
				old_thread->reason |= AST_QUANTUM;
				old_thread->current_quantum += std_quantum;
			}
		}

		/*
		 * If we are doing a direct handoff then
		 * give the remainder of our quantum to
		 * the next thread.
		 */
		if ((old_thread->reason & (AST_HANDOFF|AST_QUANTUM)) == AST_HANDOFF) {
			new_thread->current_quantum = old_thread->current_quantum;
			old_thread->reason |= AST_QUANTUM;
			old_thread->current_quantum = 0;
		}

		old_thread->last_switch = processor->last_dispatch;

		old_thread->computation_metered +=
				(old_thread->last_switch - old_thread->computation_epoch);
	}
}

/*
 *	thread_begin:
 *
 *	Set up for thread beginning execution on
 *	the current processor.
 *
 *	Called at splsched.
 */
void
thread_begin(
	thread_t			thread,
	processor_t			processor)
{
	if (!(thread->state & TH_IDLE)) {
		/*
		 * Give the thread a new quantum
		 * if none remaining.
		 */
		if (thread->current_quantum == 0)
			thread_quantum_init(thread);

		/*
		 * Set up quantum timer and timeslice.
		 */
		processor->quantum_end =
				(processor->last_dispatch + thread->current_quantum);
		timer_call_enter1(&processor->quantum_timer,
								thread, processor->quantum_end);

		processor_timeslice_setup(processor, thread);

		thread->last_switch = processor->last_dispatch;

		thread->computation_epoch = thread->last_switch;
	}
	else {
		timer_call_cancel(&processor->quantum_timer);
		processor->timeslice = 1;
	}
}

/*
 *	thread_dispatch:
 *
 *	Handle previous thread at context switch.  Re-dispatch
 *	if still running, otherwise update run state and perform
 *	special actions.
 *
 *	Called at splsched.
 */
void
thread_dispatch(
	register thread_t	thread)
{
	/*
	 *	If blocked at a continuation, discard
	 *	the stack.
	 */
    if (thread->continuation != NULL && thread->kernel_stack)
		stack_free(thread);

	if (!(thread->state & TH_IDLE)) {
		wake_lock(thread);
		thread_lock(thread);

		if (!(thread->state & TH_WAIT)) {
			/*
			 *	Still running.
			 */
			if (thread->reason & AST_QUANTUM)
				thread_setrun(thread, SCHED_TAILQ);
			else
			if (thread->reason & AST_PREEMPT)
				thread_setrun(thread, SCHED_HEADQ);
			else
				thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);

			thread->reason = AST_NONE;

			thread_unlock(thread);
			wake_unlock(thread);
		}
		else {
			boolean_t		wake;

			/*
			 *	Waiting.
			 */
			thread->state &= ~TH_RUN;

			wake = thread->wake_active;
			thread->wake_active = FALSE;

			if (thread->sched_mode & TH_MODE_TIMESHARE)
				pset_share_decr(thread->processor_set);
			pset_run_decr(thread->processor_set);

			thread_unlock(thread);
			wake_unlock(thread);

			if (thread->options & TH_OPT_CALLOUT)
				call_thread_block();

			if (wake)
				thread_wakeup((event_t)&thread->wake_active);

			if (thread->state & TH_TERMINATE)
				thread_terminate_enqueue(thread);
		}
	}
}

/*
 *	thread_block_reason:
 *
 *	Forces a reschedule, blocking the caller if a wait
 *	has been asserted.
 *
 *	If a continuation is specified, then thread_invoke will
 *	attempt to discard the thread's kernel stack.  When the
 *	thread resumes, it will execute the continuation function
 *	on a new kernel stack.
 */
counter(mach_counter_t  c_thread_block_calls = 0;)
 
wait_result_t
thread_block_reason(
	thread_continue_t	continuation,
	void				*parameter,
	ast_t				reason)
{
	register thread_t		self = current_thread();
	register processor_t	processor;
	register thread_t		new_thread;
	spl_t					s;

	counter(++c_thread_block_calls);

	s = splsched();

#if 0
#if	MACH_KDB
	{
		extern void db_chkpmgr(void);
		db_chkpmgr();						/* (BRINGUP) See if pm config changed */

	}
#endif
#endif

	if (!(reason & AST_PREEMPT))
		funnel_release_check(self, 2);

	processor = current_processor();

	/*
	 * Delay switching to the idle thread under certain conditions.
	 */
	if (s != FALSE && (self->state & (TH_IDLE|TH_TERMINATE|TH_WAIT)) == TH_WAIT) {
		if (	processor->processor_set->processor_count > 1	&&
				processor->processor_set->runq.count == 0		&&
				processor->runq.count == 0						)
			processor = delay_idle(processor, self);
	}

	/* If we're explicitly yielding, force a subsequent quantum */
	if (reason & AST_YIELD)
		processor->timeslice = 0;

	/* We're handling all scheduling AST's */
	ast_off(AST_SCHEDULING);

	self->continuation = continuation;
	self->parameter = parameter;

	thread_lock(self);
	new_thread = thread_select(processor);
	assert(new_thread && thread_runnable(new_thread));
	thread_unlock(self);
	while (!thread_invoke(self, new_thread, reason)) {
		thread_lock(self);
		new_thread = thread_select(processor);
		assert(new_thread && thread_runnable(new_thread));
		thread_unlock(self);
	}

	funnel_refunnel_check(self, 5);
	splx(s);

	return (self->wait_result);
}

/*
 *	thread_block:
 *
 *	Block the current thread if a wait has been asserted.
 */
wait_result_t
thread_block(
	thread_continue_t	continuation)
{
	return thread_block_reason(continuation, NULL, AST_NONE);
}

wait_result_t
thread_block_parameter(
	thread_continue_t	continuation,
	void				*parameter)
{
	return thread_block_reason(continuation, parameter, AST_NONE);
}

/*
 *	thread_run:
 *
 *	Switch directly from the current thread to the
 *	new thread, handing off our quantum if appropriate.
 *
 *	New thread must be runnable, and not on a run queue.
 *
 *	Called at splsched.
 */
int
thread_run(
	thread_t			self,
	thread_continue_t	continuation,
	void				*parameter,
	thread_t			new_thread)
{
	ast_t		handoff = AST_HANDOFF;

	funnel_release_check(self, 3);

	self->continuation = continuation;
	self->parameter = parameter;

	while (!thread_invoke(self, new_thread, handoff)) {
		register processor_t		processor = current_processor();

		thread_lock(self);
		new_thread = thread_select(processor);
		thread_unlock(self);
		handoff = AST_NONE;
	}

	funnel_refunnel_check(self, 6);

	return (self->wait_result);
}

/*
 *	thread_continue:
 *
 *	Called at splsched when a thread first receives
 *	a new stack after a continuation.
 */
void
thread_continue(
	register thread_t	old_thread)
{
	register thread_t			self = current_thread();
	register thread_continue_t	continuation;
	register void				*parameter;
	
	continuation = self->continuation;
	self->continuation = NULL;
	parameter = self->parameter;
	self->parameter = NULL;

	thread_begin(self, self->last_processor);

	if (old_thread != THREAD_NULL)
		thread_dispatch(old_thread);

	funnel_refunnel_check(self, 4);

	if (old_thread != THREAD_NULL)
		(void)spllo();

	call_continuation(continuation, parameter, self->wait_result);
	/*NOTREACHED*/
}

/*
 *	Enqueue thread on run queue.  Thread must be locked,
 *	and not already be on a run queue.  Returns TRUE
 *	if a preemption is indicated based on the state
 *	of the run queue.
 *
 *	Run queue must be locked, see run_queue_remove()
 *	for more info.
 */
static boolean_t
run_queue_enqueue(
	register run_queue_t	rq,
	register thread_t		thread,
	integer_t				options)
{
	register int			whichq = thread->sched_pri;
	register queue_t		queue = &rq->queues[whichq];
	boolean_t				result = FALSE;
	
	assert(whichq >= MINPRI && whichq <= MAXPRI);

	assert(thread->runq == RUN_QUEUE_NULL);
	if (queue_empty(queue)) {
		enqueue_tail(queue, (queue_entry_t)thread);

		setbit(MAXPRI - whichq, rq->bitmap);
		if (whichq > rq->highq) {
			rq->highq = whichq;
			result = TRUE;
		}
	}
	else
	if (options & SCHED_HEADQ)
		enqueue_head(queue, (queue_entry_t)thread);
	else
		enqueue_tail(queue, (queue_entry_t)thread);

	thread->runq = rq;
	if (thread->sched_mode & TH_MODE_PREEMPT)
		rq->urgency++;
	rq->count++;

	return (result);
}

/*
 *	Enqueue a thread for realtime execution, similar
 *	to above.  Handles preemption directly.
 */
static void
realtime_schedule_insert(
	register processor_set_t	pset,
	register thread_t			thread)
{
	register run_queue_t	rq = &pset->runq;
	register int			whichq = thread->sched_pri;
	register queue_t		queue = &rq->queues[whichq];
	uint64_t				deadline = thread->realtime.deadline;
	boolean_t				try_preempt = FALSE;

	assert(whichq >= BASEPRI_REALTIME && whichq <= MAXPRI);

	assert(thread->runq == RUN_QUEUE_NULL);
	if (queue_empty(queue)) {
		enqueue_tail(queue, (queue_entry_t)thread);

		setbit(MAXPRI - whichq, rq->bitmap);
		if (whichq > rq->highq)
			rq->highq = whichq;
		try_preempt = TRUE;
	}
	else {
		register thread_t	entry = (thread_t)queue_first(queue);

		while (TRUE) {
			if (	queue_end(queue, (queue_entry_t)entry)	||
						deadline < entry->realtime.deadline		) {
				entry = (thread_t)queue_prev((queue_entry_t)entry);
				break;
			}

			entry = (thread_t)queue_next((queue_entry_t)entry);
		}

		if ((queue_entry_t)entry == queue)
			try_preempt = TRUE;

		insque((queue_entry_t)thread, (queue_entry_t)entry);
	}

	thread->runq = rq;
	assert(thread->sched_mode & TH_MODE_PREEMPT);
	rq->count++; rq->urgency++;

	if (try_preempt) {
		register processor_t	processor;

		processor = current_processor();
		if (	pset == processor->processor_set				&&
				(thread->sched_pri > processor->current_pri	||
					deadline < processor->deadline			)		) {
			dispatch_counts.realtime_self++;
			simple_unlock(&pset->sched_lock);

			ast_on(AST_PREEMPT | AST_URGENT);
			return;
		}

		if (	pset->processor_count > 1			||
				pset != processor->processor_set	) {
			processor_t		myprocessor, lastprocessor;
			queue_entry_t	next;

			myprocessor = processor;
			processor = thread->last_processor;
			if (	processor != myprocessor						&&
					processor != PROCESSOR_NULL						&&
					processor->processor_set == pset				&&
					processor->state == PROCESSOR_RUNNING			&&
					(thread->sched_pri > processor->current_pri	||
						deadline < processor->deadline			)		) {
				dispatch_counts.realtime_last++;
				cause_ast_check(processor);
				simple_unlock(&pset->sched_lock);
				return;
			}

			lastprocessor = processor;
			queue = &pset->active_queue;
			processor = (processor_t)queue_first(queue);
			while (!queue_end(queue, (queue_entry_t)processor)) {
				next = queue_next((queue_entry_t)processor);

				if (	processor != myprocessor						&&
						processor != lastprocessor						&&
						(thread->sched_pri > processor->current_pri	||
							deadline < processor->deadline			)		) {
					if (!queue_end(queue, next)) {
						remqueue(queue, (queue_entry_t)processor);
						enqueue_tail(queue, (queue_entry_t)processor);
					}
					dispatch_counts.realtime_other++;
					cause_ast_check(processor);
					simple_unlock(&pset->sched_lock);
					return;
				}

				processor = (processor_t)next;
			}
		}
	}

	simple_unlock(&pset->sched_lock);
}

/*
 *	thread_setrun:
 *
 *	Dispatch thread for execution, directly onto an idle
 *	processor if possible.  Else put on appropriate run
 *	queue. (local if bound, else processor set)
 *
 *	Thread must be locked.
 */
void
thread_setrun(
	register thread_t			new_thread,
	integer_t					options)
{
	register processor_t		processor;
	register processor_set_t	pset;
	register thread_t			thread;
	ast_t						preempt = (options & SCHED_PREEMPT)?
													AST_PREEMPT: AST_NONE;

	assert(thread_runnable(new_thread));
	
	/*
	 *	Update priority if needed.
	 */
	if (new_thread->sched_stamp != sched_tick)
		update_priority(new_thread);

	/*
	 *	Check for urgent preemption.
	 */
	if (new_thread->sched_mode & TH_MODE_PREEMPT)
		preempt = (AST_PREEMPT | AST_URGENT);

	assert(new_thread->runq == RUN_QUEUE_NULL);

	if ((processor = new_thread->bound_processor) == PROCESSOR_NULL) {
	    /*
	     *	First try to dispatch on
		 *	the last processor.
	     */
	    pset = new_thread->processor_set;
		processor = new_thread->last_processor;
		if (	pset->processor_count > 1				&&
				processor != PROCESSOR_NULL				&&
				processor->state == PROCESSOR_IDLE		) {
			processor_lock(processor);
			simple_lock(&pset->sched_lock);
			if (	processor->processor_set == pset		&&
					processor->state == PROCESSOR_IDLE		) {
				remqueue(&pset->idle_queue, (queue_entry_t)processor);
				pset->idle_count--;
				processor->next_thread = new_thread;
				if (new_thread->sched_pri >= BASEPRI_RTQUEUES)
					processor->deadline = new_thread->realtime.deadline;
				else
					processor->deadline = UINT64_MAX;
				processor->state = PROCESSOR_DISPATCHING;
				dispatch_counts.idle_pset_last++;
				simple_unlock(&pset->sched_lock);
				processor_unlock(processor);
				if (processor != current_processor())
					machine_signal_idle(processor);
				return;
			}
			processor_unlock(processor);
		}
		else
		simple_lock(&pset->sched_lock);

		/*
		 *	Next pick any idle processor
		 *	in the processor set.
		 */
		if (pset->idle_count > 0) {
			processor = (processor_t)dequeue_head(&pset->idle_queue);
			pset->idle_count--;
			processor->next_thread = new_thread;
			if (new_thread->sched_pri >= BASEPRI_RTQUEUES)
				processor->deadline = new_thread->realtime.deadline;
			else
				processor->deadline = UINT64_MAX;
			processor->state = PROCESSOR_DISPATCHING;
			dispatch_counts.idle_pset_any++;
			simple_unlock(&pset->sched_lock);
			if (processor != current_processor())	
				machine_signal_idle(processor);
			return;
		}

		if (new_thread->sched_pri >= BASEPRI_RTQUEUES)
			realtime_schedule_insert(pset, new_thread);
		else {
			if (!run_queue_enqueue(&pset->runq, new_thread, options))
				preempt = AST_NONE;

			/*
			 *	Update the timesharing quanta.
			 */
			timeshare_quanta_update(pset);
	
			/*
			 *	Preempt check.
			 */
			if (preempt != AST_NONE) {
				/*
				 * First try the current processor
				 * if it is a member of the correct
				 * processor set.
				 */
				processor = current_processor();
				thread = processor->active_thread;
				if (	pset == processor->processor_set	&&
						csw_needed(thread, processor)		) {
					dispatch_counts.pset_self++;
					simple_unlock(&pset->sched_lock);

					ast_on(preempt);
					return;
				}

				/*
				 * If that failed and we have other
				 * processors available keep trying.
				 */
				if (	pset->processor_count > 1			||
						pset != processor->processor_set	) {
					queue_t			queue = &pset->active_queue;
					processor_t		myprocessor, lastprocessor;
					queue_entry_t	next;

					/*
					 * Next try the last processor
					 * dispatched on.
					 */
					myprocessor = processor;
					processor = new_thread->last_processor;
					if (	processor != myprocessor						&&
							processor != PROCESSOR_NULL						&&
							processor->processor_set == pset				&&
							processor->state == PROCESSOR_RUNNING			&&
							new_thread->sched_pri > processor->current_pri	) {
						dispatch_counts.pset_last++;
						cause_ast_check(processor);
						simple_unlock(&pset->sched_lock);
						return;
					}

					/*
					 * Lastly, pick any other
					 * available processor.
					 */
					lastprocessor = processor;
					processor = (processor_t)queue_first(queue);
					while (!queue_end(queue, (queue_entry_t)processor)) {
						next = queue_next((queue_entry_t)processor);

						if (	processor != myprocessor			&&
								processor != lastprocessor			&&
								new_thread->sched_pri >
											processor->current_pri		) {
							if (!queue_end(queue, next)) {
								remqueue(queue, (queue_entry_t)processor);
								enqueue_tail(queue, (queue_entry_t)processor);
							}
							dispatch_counts.pset_other++;
							cause_ast_check(processor);
							simple_unlock(&pset->sched_lock);
							return;
						}

						processor = (processor_t)next;
					}
				}
			}

			simple_unlock(&pset->sched_lock);
		}
	}
	else {
	    /*
	     *	Bound, can only run on bound processor.  Have to lock
	     *  processor here because it may not be the current one.
	     */
		processor_lock(processor);
		pset = processor->processor_set;
		if (pset != PROCESSOR_SET_NULL) {
			simple_lock(&pset->sched_lock);
			if (processor->state == PROCESSOR_IDLE) {
				remqueue(&pset->idle_queue, (queue_entry_t)processor);
				pset->idle_count--;
				processor->next_thread = new_thread;
				processor->deadline = UINT64_MAX;
				processor->state = PROCESSOR_DISPATCHING;
				dispatch_counts.idle_bound++;
				simple_unlock(&pset->sched_lock);
				processor_unlock(processor);
				if (processor != current_processor())	
					machine_signal_idle(processor);
				return;
			}
		}
	  
		if (!run_queue_enqueue(&processor->runq, new_thread, options))
			preempt = AST_NONE;

		if (preempt != AST_NONE) {
			if (processor == current_processor()) {
				thread = processor->active_thread;
				if (csw_needed(thread, processor)) {
					dispatch_counts.bound_self++;
					ast_on(preempt);
				}
			}
			else
			if (	processor->state == PROCESSOR_RUNNING			&&
					new_thread->sched_pri > processor->current_pri	) {
				dispatch_counts.bound_other++;
				cause_ast_check(processor);
			}
		}

		if (pset != PROCESSOR_SET_NULL)
			simple_unlock(&pset->sched_lock);

		processor_unlock(processor);
	}
}

/*
 *	Check for a possible preemption point in
 *	the (current) thread.
 *
 *	Called at splsched.
 */
ast_t
csw_check(
	thread_t		thread,
	processor_t		processor)
{
	int				current_pri = thread->sched_pri;
	ast_t			result = AST_NONE;
	run_queue_t		runq;

	if (first_timeslice(processor)) {
		runq = &processor->processor_set->runq;
		if (runq->highq >= BASEPRI_RTQUEUES)
			return (AST_PREEMPT | AST_URGENT);

		if (runq->highq > current_pri) {
			if (runq->urgency > 0)
				return (AST_PREEMPT | AST_URGENT);

			result |= AST_PREEMPT;
		}

		runq = &processor->runq;
		if (runq->highq > current_pri) {
			if (runq->urgency > 0)
				return (AST_PREEMPT | AST_URGENT);

			result |= AST_PREEMPT;
		}
	}
	else {
		runq = &processor->processor_set->runq;
		if (runq->highq >= current_pri) {
			if (runq->urgency > 0)
				return (AST_PREEMPT | AST_URGENT);

			result |= AST_PREEMPT;
		}

		runq = &processor->runq;
		if (runq->highq >= current_pri) {
			if (runq->urgency > 0)
				return (AST_PREEMPT | AST_URGENT);

			result |= AST_PREEMPT;
		}
	}

	if (result != AST_NONE)
		return (result);

	if (thread->state & TH_SUSP)
		result |= AST_PREEMPT;

	return (result);
}

/*
 *	set_sched_pri:
 *
 *	Set the scheduled priority of the specified thread.
 *
 *	This may cause the thread to change queues.
 *
 *	Thread must be locked.
 */
void
set_sched_pri(
	thread_t			thread,
	int					priority)
{
	register struct run_queue	*rq = run_queue_remove(thread);

	if (	!(thread->sched_mode & TH_MODE_TIMESHARE)				&&
			(priority >= BASEPRI_PREEMPT						||
			 (thread->task_priority < MINPRI_KERNEL			&&
			  thread->task_priority >= BASEPRI_BACKGROUND	&&
			  priority > thread->task_priority)					)	)
		thread->sched_mode |= TH_MODE_PREEMPT;
	else
		thread->sched_mode &= ~TH_MODE_PREEMPT;

	thread->sched_pri = priority;
	if (rq != RUN_QUEUE_NULL)
		thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
	else
	if (thread->state & TH_RUN) {
		processor_t		processor = thread->last_processor;

		if (thread == current_thread()) {
			ast_t		preempt = csw_check(thread, processor);

			if (preempt != AST_NONE)
				ast_on(preempt);
			processor->current_pri = priority;
		}
		else
		if (	processor != PROCESSOR_NULL						&&
				processor->active_thread == thread	)
			cause_ast_check(processor);
	}
}

#if		0

static void
run_queue_check(
	run_queue_t		rq,
	thread_t		thread)
{
	queue_t			q;
	queue_entry_t	qe;

	if (rq != thread->runq)
		panic("run_queue_check: thread runq");

	if (thread->sched_pri > MAXPRI || thread->sched_pri < MINPRI)
		panic("run_queue_check: thread sched_pri");

	q = &rq->queues[thread->sched_pri];
	qe = queue_first(q);
	while (!queue_end(q, qe)) {
		if (qe == (queue_entry_t)thread)
			return;

		qe = queue_next(qe);
	}

	panic("run_queue_check: end");
}

#endif	/* DEBUG */

/*
 *	run_queue_remove:
 *
 *	Remove a thread from its current run queue and
 *	return the run queue if successful.
 *
 *	Thread must be locked.
 */
run_queue_t
run_queue_remove(
	thread_t			thread)
{
	register run_queue_t	rq = thread->runq;

	/*
	 *	If rq is RUN_QUEUE_NULL, the thread will stay out of the
	 *	run queues because the caller locked the thread.  Otherwise
	 *	the thread is on a run queue, but could be chosen for dispatch
	 *	and removed.
	 */
	if (rq != RUN_QUEUE_NULL) {
		processor_set_t		pset = thread->processor_set;
		processor_t			processor = thread->bound_processor;

		/*
		 *	The run queues are locked by the pset scheduling
		 *	lock, except when a processor is off-line the
		 *	local run queue is locked by the processor lock.
		 */
		if (processor != PROCESSOR_NULL) {
			processor_lock(processor);
			pset = processor->processor_set;
		}

		if (pset != PROCESSOR_SET_NULL)
			simple_lock(&pset->sched_lock);

		if (rq == thread->runq) {
			/*
			 *	Thread is on a run queue and we have a lock on
			 *	that run queue.
			 */
			remqueue(&rq->queues[0], (queue_entry_t)thread);
			rq->count--;
			if (thread->sched_mode & TH_MODE_PREEMPT)
				rq->urgency--;
			assert(rq->urgency >= 0);

			if (queue_empty(rq->queues + thread->sched_pri)) {
				/* update run queue status */
				if (thread->sched_pri != IDLEPRI)
					clrbit(MAXPRI - thread->sched_pri, rq->bitmap);
				rq->highq = MAXPRI - ffsbit(rq->bitmap);
			}

			thread->runq = RUN_QUEUE_NULL;
		}
		else {
			/*
			 *	The thread left the run queue before we could
			 * 	lock the run queue.
			 */
			assert(thread->runq == RUN_QUEUE_NULL);
			rq = RUN_QUEUE_NULL;
		}

		if (pset != PROCESSOR_SET_NULL)
			simple_unlock(&pset->sched_lock);

		if (processor != PROCESSOR_NULL)
			processor_unlock(processor);
	}

	return (rq);
}

/*
 *	choose_thread:
 *
 *	Remove a thread to execute from the run queues
 *	and return it.
 *
 *	Called with pset scheduling lock held.
 */
static thread_t
choose_thread(
	processor_set_t		pset,
	processor_t			processor)
{
	register run_queue_t	runq;
	register thread_t		thread;
	register queue_t		q;

	runq = &processor->runq;

	if (runq->count > 0 && runq->highq >= pset->runq.highq) {
		q = runq->queues + runq->highq;

		thread = (thread_t)q->next;
		((queue_entry_t)thread)->next->prev = q;
		q->next = ((queue_entry_t)thread)->next;
		thread->runq = RUN_QUEUE_NULL;
		runq->count--;
		if (thread->sched_mode & TH_MODE_PREEMPT)
			runq->urgency--;
		assert(runq->urgency >= 0);
		if (queue_empty(q)) {
			if (runq->highq != IDLEPRI)
				clrbit(MAXPRI - runq->highq, runq->bitmap);
			runq->highq = MAXPRI - ffsbit(runq->bitmap);
		}

		processor->deadline = UINT64_MAX;

		return (thread);
	}

	runq = &pset->runq;

	assert(runq->count > 0);
	q = runq->queues + runq->highq;

	thread = (thread_t)q->next;
	((queue_entry_t)thread)->next->prev = q;
	q->next = ((queue_entry_t)thread)->next;
	thread->runq = RUN_QUEUE_NULL;
	runq->count--;
	if (runq->highq >= BASEPRI_RTQUEUES)
		processor->deadline = thread->realtime.deadline;
	else
		processor->deadline = UINT64_MAX;
	if (thread->sched_mode & TH_MODE_PREEMPT)
		runq->urgency--;
	assert(runq->urgency >= 0);
	if (queue_empty(q)) {
		if (runq->highq != IDLEPRI)
			clrbit(MAXPRI - runq->highq, runq->bitmap);
		runq->highq = MAXPRI - ffsbit(runq->bitmap);
	}

	timeshare_quanta_update(pset);

	return (thread);
}

static processor_t
delay_idle(
	processor_t		processor,
	thread_t		self)
{
	int				*gcount, *lcount;
	uint64_t		abstime, spin, limit;

	lcount = &processor->runq.count;
	gcount = &processor->processor_set->runq.count;

	abstime = mach_absolute_time();
	limit = abstime + delay_idle_limit;
	spin = abstime + delay_idle_spin;

	timer_event((uint32_t)abstime, &processor->idle_thread->system_timer);

	self->options |= TH_OPT_DELAYIDLE;

	while (		*gcount == 0 && *lcount == 0	&&
				(self->state & TH_WAIT)	!= 0	&&
					abstime < limit				) {
		if (abstime >= spin) {
			(void)spllo();

			(void)splsched();
			processor = current_processor();
			lcount = &processor->runq.count;
			gcount = &processor->processor_set->runq.count;

			abstime = mach_absolute_time();
			spin = abstime + delay_idle_spin;

			timer_event((uint32_t)abstime, &processor->idle_thread->system_timer);
		}
		else {
			cpu_pause();
			abstime = mach_absolute_time();
		}
	}

	timer_event((uint32_t)abstime, &self->system_timer);

	self->options &= ~TH_OPT_DELAYIDLE;

	return (processor);
}

/*
 *	no_dispatch_count counts number of times processors go non-idle
 *	without being dispatched.  This should be very rare.
 */
int	no_dispatch_count = 0;

/*
 *	This is the idle processor thread, which just looks for other threads
 *	to execute.
 */
void
idle_thread(void)
{
	register processor_t		processor;
	register thread_t			*threadp;
	register int				*gcount;
	register int				*lcount;
	register thread_t			new_thread;
	register int				state;
	register processor_set_t 	pset;
	ast_t						*myast = ast_pending();

	processor = current_processor();

	threadp = &processor->next_thread;
	lcount = &processor->runq.count;
	gcount = &processor->processor_set->runq.count;


	(void)splsched();			/* Turn interruptions off */

	pmsDown();					/* Step power down.  Note: interruptions must be disabled for this call */

	while (	(*threadp == THREAD_NULL)				&&
				(*gcount == 0) && (*lcount == 0)	) {

		/* check for ASTs while we wait */
		if (*myast &~ (AST_SCHEDULING | AST_BSD)) {
			/* no ASTs for us */
			*myast &= AST_NONE;
			(void)spllo();
		}
		else
			machine_idle();

		(void)splsched();
	}

	/*
	 *	This is not a switch statement to avoid the
	 *	bounds checking code in the common case.
	 */
	pset = processor->processor_set;
	simple_lock(&pset->sched_lock);

	pmsStep(0);					/* Step up out of idle power, may start timer for next step */

	state = processor->state;
	if (state == PROCESSOR_DISPATCHING) {
		/*
		 *	Commmon case -- cpu dispatched.
		 */
		new_thread = *threadp;
		*threadp = (volatile thread_t) THREAD_NULL;
		processor->state = PROCESSOR_RUNNING;
		enqueue_tail(&pset->active_queue, (queue_entry_t)processor);

		if (	pset->runq.highq >= BASEPRI_RTQUEUES			&&
				new_thread->sched_pri >= BASEPRI_RTQUEUES		) {
			register run_queue_t	runq = &pset->runq;
			register queue_t		q;

			q = runq->queues + runq->highq;
			if (((thread_t)q->next)->realtime.deadline <
											processor->deadline) {
				thread_t	thread = new_thread;

				new_thread = (thread_t)q->next;
				((queue_entry_t)new_thread)->next->prev = q;
				q->next = ((queue_entry_t)new_thread)->next;
				new_thread->runq = RUN_QUEUE_NULL;
				processor->deadline = new_thread->realtime.deadline;
				assert(new_thread->sched_mode & TH_MODE_PREEMPT);
				runq->count--; runq->urgency--;
				if (queue_empty(q)) {
					if (runq->highq != IDLEPRI)
						clrbit(MAXPRI - runq->highq, runq->bitmap);
					runq->highq = MAXPRI - ffsbit(runq->bitmap);
				}
				dispatch_counts.missed_realtime++;
				simple_unlock(&pset->sched_lock);

				thread_lock(thread);
				thread_setrun(thread, SCHED_HEADQ);
				thread_unlock(thread);

				counter(c_idle_thread_handoff++);
				thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
				/*NOTREACHED*/
			}
			simple_unlock(&pset->sched_lock);

			counter(c_idle_thread_handoff++);
			thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
			/*NOTREACHED*/
		}

		if (	processor->runq.highq > new_thread->sched_pri		||
				pset->runq.highq > new_thread->sched_pri				) {
			thread_t	thread = new_thread;

			new_thread = choose_thread(pset, processor);
			dispatch_counts.missed_other++;
			simple_unlock(&pset->sched_lock);

			thread_lock(thread);
			thread_setrun(thread, SCHED_HEADQ);
			thread_unlock(thread);

			counter(c_idle_thread_handoff++);
			thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
			/* NOTREACHED */
		}
		else {
			simple_unlock(&pset->sched_lock);

			counter(c_idle_thread_handoff++);
			thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
			/* NOTREACHED */
		}
	}
	else
	if (state == PROCESSOR_IDLE) {
		/*
		 *	Processor was not dispatched (Rare).
		 *	Set it running again and force a
		 *	reschedule.
		 */
		no_dispatch_count++;
		pset->idle_count--;
		remqueue(&pset->idle_queue, (queue_entry_t)processor);
		processor->state = PROCESSOR_RUNNING;
		enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
		simple_unlock(&pset->sched_lock);

		counter(c_idle_thread_block++);
		thread_block((thread_continue_t)idle_thread);
		/* NOTREACHED */
	}
	else
	if (state == PROCESSOR_SHUTDOWN) {
		/*
		 *	Going off-line.  Force a
		 *	reschedule.
		 */
		if ((new_thread = (thread_t)*threadp) != THREAD_NULL) {
			*threadp = (volatile thread_t) THREAD_NULL;
			processor->deadline = UINT64_MAX;
			simple_unlock(&pset->sched_lock);

			thread_lock(new_thread);
			thread_setrun(new_thread, SCHED_HEADQ);
			thread_unlock(new_thread);
		}
		else
			simple_unlock(&pset->sched_lock);

		counter(c_idle_thread_block++);
		thread_block((thread_continue_t)idle_thread);
		/* NOTREACHED */
	}

	simple_unlock(&pset->sched_lock);

	panic("idle_thread: state %d\n", processor->state);
	/*NOTREACHED*/
}

kern_return_t
idle_thread_create(
	processor_t		processor)
{
	kern_return_t	result;
	thread_t		thread;
	spl_t			s;

	result = kernel_thread_create((thread_continue_t)idle_thread, NULL, MAXPRI_KERNEL, &thread);
	if (result != KERN_SUCCESS)
		return (result);

	s = splsched();
	thread_lock(thread);
	thread->bound_processor = processor;
	processor->idle_thread = thread;
	thread->sched_pri = thread->priority = IDLEPRI;
	thread->state = (TH_RUN | TH_IDLE);
	thread_unlock(thread);
	splx(s);

	thread_deallocate(thread);

	return (KERN_SUCCESS);
}

static uint64_t		sched_tick_deadline;

/*
 * sched_startup:
 *
 * Kicks off scheduler services.
 *
 * Called at splsched.
 */
void
sched_startup(void)
{
	kern_return_t	result;
	thread_t		thread;

	result = kernel_thread_start_priority((thread_continue_t)sched_tick_thread, NULL, MAXPRI_KERNEL, &thread);
	if (result != KERN_SUCCESS)
		panic("sched_startup");

	thread_deallocate(thread);

	/*
	 * Yield to the sched_tick_thread while it times
	 * a series of context switches back.  It stores
	 * the baseline value in sched_cswtime.
	 *
	 * The current thread is the only other thread
	 * active at this point.
	 */
	while (sched_cswtime == 0)
		thread_block(THREAD_CONTINUE_NULL);

	thread_daemon_init();

	thread_call_initialize();
}

/*
 *	sched_tick_thread:
 *
 *	Perform periodic bookkeeping functions about ten
 *	times per second.
 */
static void
sched_tick_continue(void)
{
	uint64_t			abstime = mach_absolute_time();

	sched_tick++;

	/*
	 *  Compute various averages.
	 */
	compute_averages();

	/*
	 *  Scan the run queues for threads which
	 *  may need to be updated.
	 */
	thread_update_scan();

	clock_deadline_for_periodic_event(sched_tick_interval, abstime,
														&sched_tick_deadline);

	assert_wait_deadline((event_t)sched_tick_thread, THREAD_UNINT, sched_tick_deadline);
	thread_block((thread_continue_t)sched_tick_continue);
	/*NOTREACHED*/
}

/*
 * Time a series of context switches to determine
 * a baseline.  Toss the high and low and return
 * the one-way value.
 */
static uint32_t
time_cswitch(void)
{
	uint32_t	new, hi, low, accum;
	uint64_t	abstime;
	int			i, tries = 7;

	accum = hi = low = 0;
	for (i = 0; i < tries; ++i) {
		abstime = mach_absolute_time();
		thread_block(THREAD_CONTINUE_NULL);

		new = mach_absolute_time() - abstime;

		if (i == 0)
			accum = hi = low = new;
		else {
			if (new < low)
				low = new;
			else
			if (new > hi)
				hi = new;
			accum += new;
		}
	}

	return ((accum - hi - low) / (2 * (tries - 2)));
}

void
sched_tick_thread(void)
{
	sched_cswtime = time_cswitch();

	sched_tick_deadline = mach_absolute_time();

	sched_tick_continue();
	/*NOTREACHED*/
}

/*
 *	thread_update_scan / runq_scan:
 *
 *	Scan the run queues to account for timesharing threads 
 *	which need to be updated.
 *
 *	Scanner runs in two passes.  Pass one squirrels likely
 *	threads away in an array, pass two does the update.
 *
 *	This is necessary because the run queue is locked for
 *	the candidate scan, but	the thread is locked for the update.
 *
 *	Array should be sized to make forward progress, without
 *	disabling preemption for long periods.
 */

#define	THREAD_UPDATE_SIZE		128

static thread_t		thread_update_array[THREAD_UPDATE_SIZE];
static int			thread_update_count = 0;

/*
 *	Scan a runq for candidate threads.
 *
 *	Returns TRUE if retry is needed.
 */
static boolean_t
runq_scan(
	run_queue_t				runq)
{
	register int			count;
	register queue_t		q;
	register thread_t		thread;

	if ((count = runq->count) > 0) {
	    q = runq->queues + runq->highq;
		while (count > 0) {
			queue_iterate(q, thread, thread_t, links) {
				if (		thread->sched_stamp != sched_tick		&&
						(thread->sched_mode & TH_MODE_TIMESHARE)	) {
					if (thread_update_count == THREAD_UPDATE_SIZE)
						return (TRUE);

					thread_update_array[thread_update_count++] = thread;
					thread_reference_internal(thread);
				}

				count--;
			}

			q--;
		}
	}

	return (FALSE);
}

static void
thread_update_scan(void)
{
	register boolean_t			restart_needed;
	register processor_set_t	pset = &default_pset;
	register processor_t		processor;
	register thread_t			thread;
	spl_t						s;

	do {
		s = splsched();
		simple_lock(&pset->sched_lock);
	    restart_needed = runq_scan(&pset->runq);
		simple_unlock(&pset->sched_lock);

		if (!restart_needed) {
			simple_lock(&pset->sched_lock);
			processor = (processor_t)queue_first(&pset->processors);
			while (!queue_end(&pset->processors, (queue_entry_t)processor)) {
				if ((restart_needed = runq_scan(&processor->runq)) != 0)
					break;

				thread = processor->idle_thread;
				if (thread->sched_stamp != sched_tick) {
					if (thread_update_count == THREAD_UPDATE_SIZE) {
						restart_needed = TRUE;
						break;
					}

					thread_update_array[thread_update_count++] = thread;
					thread_reference_internal(thread);
				}

				processor = (processor_t)queue_next(&processor->processors);
			}
			simple_unlock(&pset->sched_lock);
		}
		splx(s);

	    /*
	     *	Ok, we now have a collection of candidates -- fix them.
	     */
	    while (thread_update_count > 0) {
			thread = thread_update_array[--thread_update_count];
			thread_update_array[thread_update_count] = THREAD_NULL;

			s = splsched();
			thread_lock(thread);
			if (	!(thread->state & (TH_WAIT|TH_SUSP))	&&
						thread->sched_stamp != sched_tick	)
				update_priority(thread);
			thread_unlock(thread);
			splx(s);

			thread_deallocate(thread);
	    }
	} while (restart_needed);
}
		
/*
 *	Just in case someone doesn't use the macro
 */
#undef	thread_wakeup
void
thread_wakeup(
	event_t		x);

void
thread_wakeup(
	event_t		x)
{
	thread_wakeup_with_result(x, THREAD_AWAKENED);
}

boolean_t
preemption_enabled(void)
{
	return (get_preemption_level() == 0 && ml_get_interrupts_enabled());
}

#if	DEBUG
static boolean_t
thread_runnable(
	thread_t	thread)
{
	return ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN);
}
#endif	/* DEBUG */

#if	MACH_KDB
#include <ddb/db_output.h>
#define	printf		kdbprintf
void			db_sched(void);

void
db_sched(void)
{
	iprintf("Scheduling Statistics:\n");
	db_indent += 2;
	iprintf("Thread invocations:  csw %d same %d\n",
		c_thread_invoke_csw, c_thread_invoke_same);
#if	MACH_COUNTERS
	iprintf("Thread block:  calls %d\n",
		c_thread_block_calls);
	iprintf("Idle thread:\n\thandoff %d block %d no_dispatch %d\n",
		c_idle_thread_handoff,
		c_idle_thread_block, no_dispatch_count);
	iprintf("Sched thread blocks:  %d\n", c_sched_thread_block);
#endif	/* MACH_COUNTERS */
	db_indent -= 2;
}

#include <ddb/db_output.h>
void		db_show_thread_log(void);

void
db_show_thread_log(void)
{
}
#endif	/* MACH_KDB */