mp.c   [plain text]


/*
 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 * 
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 * 
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 * 
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 * 
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */
/*
 * @OSF_COPYRIGHT@
 */

#include <mach_rt.h>
#include <mach_kdb.h>
#include <mach_kdp.h>
#include <mach_ldebug.h>
#include <gprof.h>

#include <mach/mach_types.h>
#include <mach/kern_return.h>

#include <kern/kern_types.h>
#include <kern/startup.h>
#include <kern/processor.h>
#include <kern/cpu_number.h>
#include <kern/cpu_data.h>
#include <kern/assert.h>
#include <kern/machine.h>
#include <kern/pms.h>

#include <vm/vm_map.h>
#include <vm/vm_kern.h>

#include <profiling/profile-mk.h>

#include <i386/mp.h>
#include <i386/mp_events.h>
#include <i386/mp_slave_boot.h>
#include <i386/apic.h>
#include <i386/ipl.h>
#include <i386/fpu.h>
#include <i386/cpuid.h>
#include <i386/proc_reg.h>
#include <i386/machine_cpu.h>
#include <i386/misc_protos.h>
#include <i386/mtrr.h>
#include <i386/vmx/vmx_cpu.h>
#include <i386/postcode.h>
#include <i386/perfmon.h>
#include <i386/cpu_threads.h>
#include <i386/mp_desc.h>
#include <i386/trap.h>
#include <i386/machine_routines.h>
#include <i386/pmCPU.h>
#include <i386/hpet.h>
#include <i386/machine_check.h>

#include <chud/chud_xnu.h>
#include <chud/chud_xnu_private.h>

#include <sys/kdebug.h>
#if MACH_KDB
#include <i386/db_machdep.h>
#include <ddb/db_aout.h>
#include <ddb/db_access.h>
#include <ddb/db_sym.h>
#include <ddb/db_variables.h>
#include <ddb/db_command.h>
#include <ddb/db_output.h>
#include <ddb/db_expr.h>
#endif

#if	MP_DEBUG
#define PAUSE		delay(1000000)
#define DBG(x...)	kprintf(x)
#else
#define DBG(x...)
#define PAUSE
#endif	/* MP_DEBUG */

/* Initialize lapic_id so cpu_number() works on non SMP systems */
unsigned long	lapic_id_initdata = 0;
unsigned long	lapic_id = (unsigned long)&lapic_id_initdata;
vm_offset_t	lapic_start;

static i386_intr_func_t	lapic_timer_func;
static i386_intr_func_t	lapic_pmi_func;
static i386_intr_func_t	lapic_thermal_func;

/* TRUE if local APIC was enabled by the OS not by the BIOS */
static boolean_t lapic_os_enabled = FALSE;

/* Base vector for local APIC interrupt sources */
int lapic_interrupt_base = LAPIC_DEFAULT_INTERRUPT_BASE;

void 		slave_boot_init(void);

#if MACH_KDB
static void	mp_kdb_wait(void);
volatile boolean_t	mp_kdb_trap = FALSE;
volatile long	mp_kdb_ncpus = 0;
#endif

static void	mp_kdp_wait(boolean_t flush);
static void	mp_rendezvous_action(void);
static void 	mp_broadcast_action(void);

static int		NMIInterruptHandler(x86_saved_state_t *regs);
static boolean_t	cpu_signal_pending(int cpu, mp_event_t event);
static void		cpu_NMI_interrupt(int cpu);

boolean_t 	smp_initialized = FALSE;
boolean_t	force_immediate_debugger_NMI = FALSE;

decl_simple_lock_data(,mp_kdp_lock);

decl_mutex_data(static, mp_cpu_boot_lock);

/* Variables needed for MP rendezvous. */
decl_simple_lock_data(,mp_rv_lock);
static void		(*mp_rv_setup_func)(void *arg);
static void		(*mp_rv_action_func)(void *arg);
static void		(*mp_rv_teardown_func)(void *arg);
static void		*mp_rv_func_arg;
static int		mp_rv_ncpus;
			/* Cache-aligned barriers: */
static volatile long	mp_rv_entry    __attribute__((aligned(64)));
static volatile long	mp_rv_exit     __attribute__((aligned(64)));
static volatile long	mp_rv_complete __attribute__((aligned(64)));

/* Variables needed for MP broadcast. */
static void        (*mp_bc_action_func)(void *arg);
static void        *mp_bc_func_arg;
static int     mp_bc_ncpus;
static volatile long   mp_bc_count;
decl_mutex_data(static, mp_bc_lock);

static void	mp_cpus_call_action(void); 

int		lapic_to_cpu[MAX_CPUS];
int		cpu_to_lapic[MAX_CPUS];

static void
lapic_cpu_map_init(void)
{
	int	i;

	for (i = 0; i < MAX_CPUS; i++) {
		lapic_to_cpu[i] = -1;
		cpu_to_lapic[i] = -1;
	}
}

void
lapic_cpu_map(int apic_id, int cpu)
{
	cpu_to_lapic[cpu] = apic_id;
	lapic_to_cpu[apic_id] = cpu;
}

/*
 * Retrieve the local apic ID a cpu.
 *
 * Returns the local apic ID for the given processor.
 * If the processor does not exist or apic not configured, returns -1.
 */

uint32_t
ml_get_apicid(uint32_t cpu)
{
	if(cpu >= (uint32_t)MAX_CPUS)
		return 0xFFFFFFFF;	/* Return -1 if cpu too big */
	
	/* Return the apic ID (or -1 if not configured) */
	return (uint32_t)cpu_to_lapic[cpu];

}

#ifdef MP_DEBUG
static void
lapic_cpu_map_dump(void)
{
	int	i;

	for (i = 0; i < MAX_CPUS; i++) {
		if (cpu_to_lapic[i] == -1)
			continue;
		kprintf("cpu_to_lapic[%d]: %d\n",
			i, cpu_to_lapic[i]);
	}
	for (i = 0; i < MAX_CPUS; i++) {
		if (lapic_to_cpu[i] == -1)
			continue;
		kprintf("lapic_to_cpu[%d]: %d\n",
			i, lapic_to_cpu[i]);
	}
}
#define LAPIC_CPU_MAP_DUMP()	lapic_cpu_map_dump()
#define LAPIC_DUMP()		lapic_dump()
#else
#define LAPIC_CPU_MAP_DUMP()
#define LAPIC_DUMP()
#endif /* MP_DEBUG */

#if GPROF
/*
 * Initialize dummy structs for profiling. These aren't used but
 * allows hertz_tick() to be built with GPROF defined.
 */
struct profile_vars _profile_vars;
struct profile_vars *_profile_vars_cpus[MAX_CPUS] = { &_profile_vars };
#define GPROF_INIT()							\
{									\
	int	i;							\
									\
	/* Hack to initialize pointers to unused profiling structs */	\
	for (i = 1; i < MAX_CPUS; i++)				\
		_profile_vars_cpus[i] = &_profile_vars;			\
}
#else
#define GPROF_INIT()
#endif /* GPROF */

void
smp_init(void)
{
	int		result;
	vm_map_entry_t	entry;
	uint32_t	lo;
	uint32_t	hi;
	boolean_t	is_boot_processor;
	boolean_t	is_lapic_enabled;
	vm_offset_t	lapic_base;

	simple_lock_init(&mp_kdp_lock, 0);
	simple_lock_init(&mp_rv_lock, 0);
	mutex_init(&mp_cpu_boot_lock, 0);
	mutex_init(&mp_bc_lock, 0);
	console_init();

	/* Local APIC? */
	if (!lapic_probe())
		return;

	/* Examine the local APIC state */
	rdmsr(MSR_IA32_APIC_BASE, lo, hi);
	is_boot_processor = (lo & MSR_IA32_APIC_BASE_BSP) != 0;
	is_lapic_enabled  = (lo & MSR_IA32_APIC_BASE_ENABLE) != 0;
	lapic_base = (lo &  MSR_IA32_APIC_BASE_BASE);
	kprintf("MSR_IA32_APIC_BASE 0x%x %s %s\n", lapic_base,
		is_lapic_enabled ? "enabled" : "disabled",
		is_boot_processor ? "BSP" : "AP");
	if (!is_boot_processor || !is_lapic_enabled)
		panic("Unexpected local APIC state\n");

	/* Establish a map to the local apic */
	lapic_start = vm_map_min(kernel_map);
	result = vm_map_find_space(kernel_map,
				   (vm_map_address_t *) &lapic_start,
				   round_page(LAPIC_SIZE), 0,
				   VM_MAKE_TAG(VM_MEMORY_IOKIT), &entry);
	if (result != KERN_SUCCESS) {
		panic("smp_init: vm_map_find_entry FAILED (err=%d)", result);
	}
	vm_map_unlock(kernel_map);
/* Map in the local APIC non-cacheable, as recommended by Intel
 * in section 8.4.1 of the "System Programming Guide".
 */
	pmap_enter(pmap_kernel(),
			lapic_start,
			(ppnum_t) i386_btop(lapic_base),
			VM_PROT_READ|VM_PROT_WRITE,
			VM_WIMG_IO,
			TRUE);
	lapic_id = (unsigned long)(lapic_start + LAPIC_ID);

	if ((LAPIC_REG(VERSION)&LAPIC_VERSION_MASK) != 0x14) {
		printf("Local APIC version not 0x14 as expected\n");
	}

	/* Set up the lapic_id <-> cpu_number map and add this boot processor */
	lapic_cpu_map_init();
	lapic_cpu_map((LAPIC_REG(ID)>>LAPIC_ID_SHIFT)&LAPIC_ID_MASK, 0);
	kprintf("Boot cpu local APIC id 0x%x\n", cpu_to_lapic[0]);

	lapic_init();

	cpu_thread_init();

	GPROF_INIT();
	DBGLOG_CPU_INIT(master_cpu);

	slave_boot_init();

	smp_initialized = TRUE;

	return;
}


static int
lapic_esr_read(void)
{
	/* write-read register */
	LAPIC_REG(ERROR_STATUS) = 0;
	return LAPIC_REG(ERROR_STATUS);
}

static void 
lapic_esr_clear(void)
{
	LAPIC_REG(ERROR_STATUS) = 0;
	LAPIC_REG(ERROR_STATUS) = 0;
}

static const char *DM[8] = {
	"Fixed",
	"Lowest Priority",
	"Invalid",
	"Invalid",
	"NMI",
	"Reset",
	"Invalid",
	"ExtINT"};

void
lapic_dump(void)
{
	int	i;

#define BOOL(a) ((a)?' ':'!')

	kprintf("LAPIC %d at 0x%x version 0x%x\n", 
		(LAPIC_REG(ID)>>LAPIC_ID_SHIFT)&LAPIC_ID_MASK,
		lapic_start,
		LAPIC_REG(VERSION)&LAPIC_VERSION_MASK);
	kprintf("Priorities: Task 0x%x  Arbitration 0x%x  Processor 0x%x\n",
		LAPIC_REG(TPR)&LAPIC_TPR_MASK,
		LAPIC_REG(APR)&LAPIC_APR_MASK,
		LAPIC_REG(PPR)&LAPIC_PPR_MASK);
	kprintf("Destination Format 0x%x Logical Destination 0x%x\n",
		LAPIC_REG(DFR)>>LAPIC_DFR_SHIFT,
		LAPIC_REG(LDR)>>LAPIC_LDR_SHIFT);
	kprintf("%cEnabled %cFocusChecking SV 0x%x\n",
		BOOL(LAPIC_REG(SVR)&LAPIC_SVR_ENABLE),
		BOOL(!(LAPIC_REG(SVR)&LAPIC_SVR_FOCUS_OFF)),
		LAPIC_REG(SVR) & LAPIC_SVR_MASK);
	kprintf("LVT_TIMER:   Vector 0x%02x %s %cmasked %s\n",
		LAPIC_REG(LVT_TIMER)&LAPIC_LVT_VECTOR_MASK,
		(LAPIC_REG(LVT_TIMER)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
		BOOL(LAPIC_REG(LVT_TIMER)&LAPIC_LVT_MASKED),
		(LAPIC_REG(LVT_TIMER)&LAPIC_LVT_PERIODIC)?"Periodic":"OneShot");
	kprintf("  Initial Count: 0x%08x \n", LAPIC_REG(TIMER_INITIAL_COUNT));
	kprintf("  Current Count: 0x%08x \n", LAPIC_REG(TIMER_CURRENT_COUNT));
	kprintf("  Divide Config: 0x%08x \n", LAPIC_REG(TIMER_DIVIDE_CONFIG));
	kprintf("LVT_PERFCNT: Vector 0x%02x [%s] %s %cmasked\n",
		LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_VECTOR_MASK,
		DM[(LAPIC_REG(LVT_PERFCNT)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
		(LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
		BOOL(LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_MASKED));
	kprintf("LVT_THERMAL: Vector 0x%02x [%s] %s %cmasked\n",
		LAPIC_REG(LVT_THERMAL)&LAPIC_LVT_VECTOR_MASK,
		DM[(LAPIC_REG(LVT_THERMAL)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
		(LAPIC_REG(LVT_THERMAL)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
		BOOL(LAPIC_REG(LVT_THERMAL)&LAPIC_LVT_MASKED));
	kprintf("LVT_LINT0:   Vector 0x%02x [%s][%s][%s] %s %cmasked\n",
		LAPIC_REG(LVT_LINT0)&LAPIC_LVT_VECTOR_MASK,
		DM[(LAPIC_REG(LVT_LINT0)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
		(LAPIC_REG(LVT_LINT0)&LAPIC_LVT_TM_LEVEL)?"Level":"Edge ",
		(LAPIC_REG(LVT_LINT0)&LAPIC_LVT_IP_PLRITY_LOW)?"Low ":"High",
		(LAPIC_REG(LVT_LINT0)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
		BOOL(LAPIC_REG(LVT_LINT0)&LAPIC_LVT_MASKED));
	kprintf("LVT_LINT1:   Vector 0x%02x [%s][%s][%s] %s %cmasked\n",
		LAPIC_REG(LVT_LINT1)&LAPIC_LVT_VECTOR_MASK,
		DM[(LAPIC_REG(LVT_LINT1)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
		(LAPIC_REG(LVT_LINT1)&LAPIC_LVT_TM_LEVEL)?"Level":"Edge ",
		(LAPIC_REG(LVT_LINT1)&LAPIC_LVT_IP_PLRITY_LOW)?"Low ":"High",
		(LAPIC_REG(LVT_LINT1)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
		BOOL(LAPIC_REG(LVT_LINT1)&LAPIC_LVT_MASKED));
	kprintf("LVT_ERROR:   Vector 0x%02x %s %cmasked\n",
		LAPIC_REG(LVT_ERROR)&LAPIC_LVT_VECTOR_MASK,
		(LAPIC_REG(LVT_ERROR)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
		BOOL(LAPIC_REG(LVT_ERROR)&LAPIC_LVT_MASKED));
	kprintf("ESR: %08x \n", lapic_esr_read());
	kprintf("       ");
	for(i=0xf; i>=0; i--)
		kprintf("%x%x%x%x",i,i,i,i);
	kprintf("\n");
	kprintf("TMR: 0x");
	for(i=7; i>=0; i--)
		kprintf("%08x",LAPIC_REG_OFFSET(TMR_BASE, i*0x10));
	kprintf("\n");
	kprintf("IRR: 0x");
	for(i=7; i>=0; i--)
		kprintf("%08x",LAPIC_REG_OFFSET(IRR_BASE, i*0x10));
	kprintf("\n");
	kprintf("ISR: 0x");
	for(i=7; i >= 0; i--)
		kprintf("%08x",LAPIC_REG_OFFSET(ISR_BASE, i*0x10));
	kprintf("\n");
}

#if MACH_KDB
/*
 *	Displays apic junk
 *
 *	da
 */
void 
db_apic(__unused db_expr_t addr,
	__unused int have_addr,
	__unused db_expr_t count,
	__unused char *modif)
{

	lapic_dump();

	return;
}

#endif

boolean_t
lapic_probe(void)
{
	uint32_t	lo;
	uint32_t	hi;

	if (cpuid_features() & CPUID_FEATURE_APIC)
		return TRUE;

	if (cpuid_family() == 6 || cpuid_family() == 15) {
		/*
		 * Mobile Pentiums:
		 * There may be a local APIC which wasn't enabled by BIOS.
		 * So we try to enable it explicitly.
		 */
		rdmsr(MSR_IA32_APIC_BASE, lo, hi);
		lo &= ~MSR_IA32_APIC_BASE_BASE;
		lo |= MSR_IA32_APIC_BASE_ENABLE | LAPIC_START;
		lo |= MSR_IA32_APIC_BASE_ENABLE;
		wrmsr(MSR_IA32_APIC_BASE, lo, hi);

		/*
		 * Re-initialize cpu features info and re-check.
		 */
		cpuid_set_info();
		if (cpuid_features() & CPUID_FEATURE_APIC) {
			printf("Local APIC discovered and enabled\n");
			lapic_os_enabled = TRUE;
			lapic_interrupt_base = LAPIC_REDUCED_INTERRUPT_BASE;
			return TRUE;
		}
	}

	return FALSE;
}

void
lapic_shutdown(void)
{
	uint32_t lo;
	uint32_t hi;
	uint32_t value;

	/* Shutdown if local APIC was enabled by OS */
	if (lapic_os_enabled == FALSE)
		return;

	mp_disable_preemption();

	/* ExtINT: masked */
	if (get_cpu_number() == master_cpu) {
		value = LAPIC_REG(LVT_LINT0);
		value |= LAPIC_LVT_MASKED;
		LAPIC_REG(LVT_LINT0) = value;
	}

	/* Timer: masked */
	LAPIC_REG(LVT_TIMER) |= LAPIC_LVT_MASKED;

	/* Perfmon: masked */
	LAPIC_REG(LVT_PERFCNT) |= LAPIC_LVT_MASKED;

	/* Error: masked */
	LAPIC_REG(LVT_ERROR) |= LAPIC_LVT_MASKED;

	/* APIC software disabled */
	LAPIC_REG(SVR) &= ~LAPIC_SVR_ENABLE;

	/* Bypass the APIC completely and update cpu features */
	rdmsr(MSR_IA32_APIC_BASE, lo, hi);
	lo &= ~MSR_IA32_APIC_BASE_ENABLE;
	wrmsr(MSR_IA32_APIC_BASE, lo, hi);
	cpuid_set_info();

	mp_enable_preemption();
}

void
lapic_init(void)
{
	int	value;

	/* Set flat delivery model, logical processor id */
	LAPIC_REG(DFR) = LAPIC_DFR_FLAT;
	LAPIC_REG(LDR) = (get_cpu_number()) << LAPIC_LDR_SHIFT;

	/* Accept all */
	LAPIC_REG(TPR) =  0;

	LAPIC_REG(SVR) = LAPIC_VECTOR(SPURIOUS) | LAPIC_SVR_ENABLE;

	/* ExtINT */
	if (get_cpu_number() == master_cpu) {
		value = LAPIC_REG(LVT_LINT0);
		value &= ~LAPIC_LVT_MASKED;
		value |= LAPIC_LVT_DM_EXTINT;
		LAPIC_REG(LVT_LINT0) = value;
	}

	/* Timer: unmasked, one-shot */
	LAPIC_REG(LVT_TIMER) = LAPIC_VECTOR(TIMER);

	/* Perfmon: unmasked */
	LAPIC_REG(LVT_PERFCNT) = LAPIC_VECTOR(PERFCNT);

	/* Thermal: unmasked */
	LAPIC_REG(LVT_THERMAL) = LAPIC_VECTOR(THERMAL);

	lapic_esr_clear();

	LAPIC_REG(LVT_ERROR) = LAPIC_VECTOR(ERROR);
}

void
lapic_set_timer_func(i386_intr_func_t func)
{
	lapic_timer_func = func;
}

void
lapic_set_timer(
	boolean_t		interrupt,
	lapic_timer_mode_t	mode,
	lapic_timer_divide_t	divisor,
	lapic_timer_count_t	initial_count)
{
	boolean_t	state;
	uint32_t	timer_vector;

	state = ml_set_interrupts_enabled(FALSE);
	timer_vector = LAPIC_REG(LVT_TIMER);
	timer_vector &= ~(LAPIC_LVT_MASKED|LAPIC_LVT_PERIODIC);;
	timer_vector |= interrupt ? 0 : LAPIC_LVT_MASKED;
	timer_vector |= (mode == periodic) ? LAPIC_LVT_PERIODIC : 0;
	LAPIC_REG(LVT_TIMER) = timer_vector;
	LAPIC_REG(TIMER_DIVIDE_CONFIG) = divisor;
	LAPIC_REG(TIMER_INITIAL_COUNT) = initial_count;
	ml_set_interrupts_enabled(state);
}

void
lapic_get_timer(
	lapic_timer_mode_t	*mode,
	lapic_timer_divide_t	*divisor,
	lapic_timer_count_t	*initial_count,
	lapic_timer_count_t	*current_count)
{
	boolean_t	state;

	state = ml_set_interrupts_enabled(FALSE);
	if (mode)
		*mode = (LAPIC_REG(LVT_TIMER) & LAPIC_LVT_PERIODIC) ?
				periodic : one_shot;
	if (divisor)
		*divisor = LAPIC_REG(TIMER_DIVIDE_CONFIG) & LAPIC_TIMER_DIVIDE_MASK;
	if (initial_count)
		*initial_count = LAPIC_REG(TIMER_INITIAL_COUNT);
	if (current_count)
		*current_count = LAPIC_REG(TIMER_CURRENT_COUNT);
	ml_set_interrupts_enabled(state);
} 

void
lapic_set_pmi_func(i386_intr_func_t func)
{
	lapic_pmi_func = func;
}

void
lapic_set_thermal_func(i386_intr_func_t func)
{
        lapic_thermal_func = func;
}

static inline void
_lapic_end_of_interrupt(void)
{
	LAPIC_REG(EOI) = 0;
}

void
lapic_end_of_interrupt(void)
{
	_lapic_end_of_interrupt();
}

int
lapic_interrupt(int interrupt, x86_saved_state_t *state)
{
	int	retval = 0;

	/* Did we just field an interruption for the HPET comparator? */
	if(x86_core()->HpetVec == ((uint32_t)interrupt - 0x40)) {
		/* Yes, go handle it... */
		retval = HPETInterrupt();
		/* Was it really handled? */
		if(retval) {
			/* If so, EOI the 'rupt */
			_lapic_end_of_interrupt();
			/*
			 * and then leave,
			 * indicating that this has been handled
			 */
			return 1;
		}
	}

	interrupt -= lapic_interrupt_base;
	if (interrupt < 0) {
		if (interrupt == (LAPIC_NMI_INTERRUPT - lapic_interrupt_base)) {
			retval = NMIInterruptHandler(state);
			_lapic_end_of_interrupt();
			return retval;
		}
		else
			return 0;
	}

	switch(interrupt) {
	case LAPIC_PERFCNT_INTERRUPT:
		if (lapic_pmi_func != NULL)
			(*lapic_pmi_func)(NULL);
		/* Clear interrupt masked */
		LAPIC_REG(LVT_PERFCNT) = LAPIC_VECTOR(PERFCNT);
		_lapic_end_of_interrupt();
		retval = 1;
		break;
	case LAPIC_TIMER_INTERRUPT:
		_lapic_end_of_interrupt();
		if (lapic_timer_func != NULL)
			(*lapic_timer_func)(state);
		retval = 1;
		break;
	case LAPIC_THERMAL_INTERRUPT:
		if (lapic_thermal_func != NULL)
			(*lapic_thermal_func)(NULL);
		_lapic_end_of_interrupt();
		retval = 1;
		break;
	case LAPIC_ERROR_INTERRUPT:
		lapic_dump();
		panic("Local APIC error\n");
		_lapic_end_of_interrupt();
		retval = 1;
		break;
	case LAPIC_SPURIOUS_INTERRUPT:
		kprintf("SPIV\n");
		/* No EOI required here */
		retval = 1;
		break;
	case LAPIC_INTERPROCESSOR_INTERRUPT:
		_lapic_end_of_interrupt();
		cpu_signal_handler(state);
		retval = 1;
		break;
	}

	return retval;
}

void
lapic_smm_restore(void)
{
	boolean_t state;

	if (lapic_os_enabled == FALSE)
		return;

	state = ml_set_interrupts_enabled(FALSE);

 	if (LAPIC_ISR_IS_SET(LAPIC_REDUCED_INTERRUPT_BASE, TIMER)) {
		/*
		 * Bogus SMI handler enables interrupts but does not know about
		 * local APIC interrupt sources. When APIC timer counts down to
		 * zero while in SMM, local APIC will end up waiting for an EOI
		 * but no interrupt was delivered to the OS.
 		 */
		_lapic_end_of_interrupt();

		/*
		 * timer is one-shot, trigger another quick countdown to trigger
		 * another timer interrupt.
		 */
		if (LAPIC_REG(TIMER_CURRENT_COUNT) == 0) {
			LAPIC_REG(TIMER_INITIAL_COUNT) = 1;
		}

		kprintf("lapic_smm_restore\n");
	}

	ml_set_interrupts_enabled(state);
}

kern_return_t
intel_startCPU(
	int	slot_num)
{

	int	i = 1000;
	int	lapic = cpu_to_lapic[slot_num];

	assert(lapic != -1);

	DBGLOG_CPU_INIT(slot_num);

	DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic);
	DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) IdlePTD);

	/*
	 * Initialize (or re-initialize) the descriptor tables for this cpu.
	 * Propagate processor mode to slave.
	 */
	if (cpu_mode_is64bit())
		cpu_desc_init64(cpu_datap(slot_num), FALSE);
	else
		cpu_desc_init(cpu_datap(slot_num), FALSE);

	/* Serialize use of the slave boot stack. */
	mutex_lock(&mp_cpu_boot_lock);

	mp_disable_preemption();
	if (slot_num == get_cpu_number()) {
		mp_enable_preemption();
		mutex_unlock(&mp_cpu_boot_lock);
		return KERN_SUCCESS;
	}

	LAPIC_REG(ICRD) = lapic << LAPIC_ICRD_DEST_SHIFT;
	LAPIC_REG(ICR) = LAPIC_ICR_DM_INIT;
	delay(10000);

	LAPIC_REG(ICRD) = lapic << LAPIC_ICRD_DEST_SHIFT;
	LAPIC_REG(ICR) = LAPIC_ICR_DM_STARTUP|(MP_BOOT>>12);
	delay(200);

	LAPIC_REG(ICRD) = lapic << LAPIC_ICRD_DEST_SHIFT;
	LAPIC_REG(ICR) = LAPIC_ICR_DM_STARTUP|(MP_BOOT>>12);
	delay(200);

#ifdef	POSTCODE_DELAY
	/* Wait much longer if postcodes are displayed for a delay period. */
	i *= 10000;
#endif
	while(i-- > 0) {
		if (cpu_datap(slot_num)->cpu_running)
			break;
		delay(10000);
	}

	mp_enable_preemption();
	mutex_unlock(&mp_cpu_boot_lock);

	if (!cpu_datap(slot_num)->cpu_running) {
		kprintf("Failed to start CPU %02d\n", slot_num);
		printf("Failed to start CPU %02d, rebooting...\n", slot_num);
		delay(1000000);
		cpu_shutdown();
		return KERN_SUCCESS;
	} else {
		kprintf("Started cpu %d (lapic id %08x)\n", slot_num, lapic);
		return KERN_SUCCESS;
	}
}

extern char	slave_boot_base[];
extern char	slave_boot_end[];
extern void	slave_pstart(void);

void
slave_boot_init(void)
{
	DBG("V(slave_boot_base)=%p P(slave_boot_base)=%p MP_BOOT=%p sz=0x%x\n",
		slave_boot_base,
		kvtophys((vm_offset_t) slave_boot_base),
		MP_BOOT,
		slave_boot_end-slave_boot_base);

	/*
	 * Copy the boot entry code to the real-mode vector area MP_BOOT.
	 * This is in page 1 which has been reserved for this purpose by
	 * machine_startup() from the boot processor.
	 * The slave boot code is responsible for switching to protected
	 * mode and then jumping to the common startup, _start().
	 */
	bcopy_phys(kvtophys((vm_offset_t) slave_boot_base),
		   (addr64_t) MP_BOOT,
		   slave_boot_end-slave_boot_base);

	/*
	 * Zero a stack area above the boot code.
	 */
	DBG("bzero_phys 0x%x sz 0x%x\n",MP_BOOTSTACK+MP_BOOT-0x400, 0x400);
	bzero_phys((addr64_t)MP_BOOTSTACK+MP_BOOT-0x400, 0x400);

	/*
	 * Set the location at the base of the stack to point to the
	 * common startup entry.
	 */
	DBG("writing 0x%x at phys 0x%x\n",
		kvtophys((vm_offset_t) &slave_pstart), MP_MACH_START+MP_BOOT);
	ml_phys_write_word(MP_MACH_START+MP_BOOT,
			   (unsigned int)kvtophys((vm_offset_t) &slave_pstart));
	
	/* Flush caches */
	__asm__("wbinvd");
}

#if	MP_DEBUG
cpu_signal_event_log_t	*cpu_signal[MAX_CPUS];
cpu_signal_event_log_t	*cpu_handle[MAX_CPUS];

MP_EVENT_NAME_DECL();

#endif	/* MP_DEBUG */

void
cpu_signal_handler(x86_saved_state_t *regs)
{
	int		my_cpu;
	volatile int	*my_word;
#if	MACH_KDB && MACH_ASSERT
	int		i=100;
#endif	/* MACH_KDB && MACH_ASSERT */

	mp_disable_preemption();

	my_cpu = cpu_number();
	my_word = &current_cpu_datap()->cpu_signals;

	do {
#if	MACH_KDB && MACH_ASSERT
		if (i-- <= 0)
		    Debugger("cpu_signal_handler: signals did not clear");
#endif	/* MACH_KDB && MACH_ASSERT */
#if	MACH_KDP
		if (i_bit(MP_KDP, my_word)) {
			DBGLOG(cpu_handle,my_cpu,MP_KDP);
			i_bit_clear(MP_KDP, my_word);
/* Ensure that the i386_kernel_state at the base of the
 * current thread's stack (if any) is synchronized with the
 * context at the moment of the interrupt, to facilitate
 * access through the debugger.
 * XXX 64-bit state?
 */
			sync_iss_to_iks(saved_state32(regs));
			mp_kdp_wait(TRUE);
		} else
#endif	/* MACH_KDP */
		if (i_bit(MP_TLB_FLUSH, my_word)) {
			DBGLOG(cpu_handle,my_cpu,MP_TLB_FLUSH);
			i_bit_clear(MP_TLB_FLUSH, my_word);
			pmap_update_interrupt();
		} else if (i_bit(MP_AST, my_word)) {
			DBGLOG(cpu_handle,my_cpu,MP_AST);
			i_bit_clear(MP_AST, my_word);
			ast_check(cpu_to_processor(my_cpu));
#if	MACH_KDB
		} else if (i_bit(MP_KDB, my_word)) {

			i_bit_clear(MP_KDB, my_word);
			current_cpu_datap()->cpu_kdb_is_slave++;
			mp_kdb_wait();
			current_cpu_datap()->cpu_kdb_is_slave--;
#endif	/* MACH_KDB */
		} else if (i_bit(MP_RENDEZVOUS, my_word)) {
			DBGLOG(cpu_handle,my_cpu,MP_RENDEZVOUS);
			i_bit_clear(MP_RENDEZVOUS, my_word);
			mp_rendezvous_action();
		} else if (i_bit(MP_BROADCAST, my_word)) {
			DBGLOG(cpu_handle,my_cpu,MP_BROADCAST);
			i_bit_clear(MP_BROADCAST, my_word);
			mp_broadcast_action();
		} else if (i_bit(MP_CHUD, my_word)) {
			DBGLOG(cpu_handle,my_cpu,MP_CHUD);
			i_bit_clear(MP_CHUD, my_word);
			chudxnu_cpu_signal_handler();
		} else if (i_bit(MP_CALL, my_word)) {
			DBGLOG(cpu_handle,my_cpu,MP_CALL);
			i_bit_clear(MP_CALL, my_word);
			mp_cpus_call_action();
		}
	} while (*my_word);

	mp_enable_preemption();

}

/* We want this to show up in backtraces, hence marked noinline.
 */
static int __attribute__((noinline))
NMIInterruptHandler(x86_saved_state_t *regs)
{
	boolean_t state = ml_set_interrupts_enabled(FALSE);
	sync_iss_to_iks_unconditionally(regs);
	mp_kdp_wait(FALSE);
	(void) ml_set_interrupts_enabled(state);
	return 1;
}

#ifdef	MP_DEBUG
extern int	max_lock_loops;
int		trappedalready = 0;	/* (BRINGUP */
#endif	/* MP_DEBUG */

static void
i386_cpu_IPI(int cpu)
{
	boolean_t	state;
	
#ifdef	MP_DEBUG
	if(cpu_datap(cpu)->cpu_signals & 6) {	/* (BRINGUP) */
		kprintf("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d\n", cpu_datap(cpu)->cpu_signals, cpu);
	}
#endif	/* MP_DEBUG */

#if MACH_KDB
#ifdef	MP_DEBUG
	if(!trappedalready && (cpu_datap(cpu)->cpu_signals & 6)) {	/* (BRINGUP) */
		if(kdb_cpu != cpu_number()) {
			trappedalready = 1;
			panic("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d and I do not own debugger, owner = %08X\n", 
				cpu_datap(cpu)->cpu_signals, cpu, kdb_cpu);
		}
	}
#endif	/* MP_DEBUG */
#endif

	/* Wait for previous interrupt to be delivered... */
#ifdef	MP_DEBUG
	int     pending_busy_count = 0;
	while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
		if (++pending_busy_count > max_lock_loops)
			panic("i386_cpu_IPI() deadlock\n");
#else
	while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
#endif	/* MP_DEBUG */
		cpu_pause();
	}

	state = ml_set_interrupts_enabled(FALSE);
	LAPIC_REG(ICRD) =
		cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT;
	LAPIC_REG(ICR)  =
		LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_FIXED;
	(void) ml_set_interrupts_enabled(state);
}

/*
 * cpu_interrupt is really just to be used by the scheduler to
 * get a CPU's attention it may not always issue an IPI.  If an
 * IPI is always needed then use i386_cpu_IPI.
 */
void
cpu_interrupt(int cpu)
{
	if (smp_initialized
	    && pmCPUExitIdle(cpu_datap(cpu))) {
		i386_cpu_IPI(cpu);
	}
}

/*
 * Send a true NMI via the local APIC to the specified CPU.
 */
static void
cpu_NMI_interrupt(int cpu)
{
	boolean_t	state;

	if (smp_initialized) {
		state = ml_set_interrupts_enabled(FALSE);
/* Program the interrupt command register */
		LAPIC_REG(ICRD) =
			cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT;
/* The vector is ignored in this case--the target CPU will enter on the
 * NMI vector.
 */
		LAPIC_REG(ICR)  =
			LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_NMI;
		(void) ml_set_interrupts_enabled(state);
	}
}

void
i386_signal_cpu(int cpu, mp_event_t event, mp_sync_t mode)
{
	volatile int	*signals = &cpu_datap(cpu)->cpu_signals;
	uint64_t	tsc_timeout;

	
	if (!cpu_datap(cpu)->cpu_running)
		return;

	if (event == MP_TLB_FLUSH)
	        KERNEL_DEBUG(0xef800020 | DBG_FUNC_START, cpu, 0, 0, 0, 0);

	DBGLOG(cpu_signal, cpu, event);
	
	i_bit_set(event, signals);
	i386_cpu_IPI(cpu);
	if (mode == SYNC) {
	   again:
		tsc_timeout = rdtsc64() + (1000*1000*1000);
		while (i_bit(event, signals) && rdtsc64() < tsc_timeout) {
			cpu_pause();
		}
		if (i_bit(event, signals)) {
			DBG("i386_signal_cpu(%d, 0x%x, SYNC) timed out\n",
				cpu, event);
			goto again;
		}
	}
	if (event == MP_TLB_FLUSH)
	        KERNEL_DEBUG(0xef800020 | DBG_FUNC_END, cpu, 0, 0, 0, 0);
}

/*
 * Send event to all running cpus.
 * Called with the topology locked.
 */
void
i386_signal_cpus(mp_event_t event, mp_sync_t mode)
{
	unsigned int	cpu;
	unsigned int	my_cpu = cpu_number();

	assert(hw_lock_held(&x86_topo_lock));

	for (cpu = 0; cpu < real_ncpus; cpu++) {
		if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
			continue;
		i386_signal_cpu(cpu, event, mode);
	}
}

/*
 * Return the number of running cpus.
 * Called with the topology locked.
 */
int
i386_active_cpus(void)
{
	unsigned int	cpu;
	unsigned int	ncpus = 0;

	assert(hw_lock_held(&x86_topo_lock));

	for (cpu = 0; cpu < real_ncpus; cpu++) {
		if (cpu_datap(cpu)->cpu_running)
			ncpus++;
	}
	return(ncpus);
}

/*
 * All-CPU rendezvous:
 * 	- CPUs are signalled,
 *	- all execute the setup function (if specified),
 *	- rendezvous (i.e. all cpus reach a barrier),
 *	- all execute the action function (if specified),
 *	- rendezvous again,
 *	- execute the teardown function (if specified), and then
 *	- resume.
 *
 * Note that the supplied external functions _must_ be reentrant and aware
 * that they are running in parallel and in an unknown lock context.
 */

static void
mp_rendezvous_action(void)
{
	boolean_t intrs_enabled;

	/* setup function */
	if (mp_rv_setup_func != NULL)
		mp_rv_setup_func(mp_rv_func_arg);

	intrs_enabled = ml_get_interrupts_enabled();

	/* spin on entry rendezvous */
	atomic_incl(&mp_rv_entry, 1);
	while (mp_rv_entry < mp_rv_ncpus) {
		/* poll for pesky tlb flushes if interrupts disabled */
		if (!intrs_enabled)
			handle_pending_TLB_flushes();
		cpu_pause();
	}
	/* action function */
	if (mp_rv_action_func != NULL)
		mp_rv_action_func(mp_rv_func_arg);
	/* spin on exit rendezvous */
	atomic_incl(&mp_rv_exit, 1);
	while (mp_rv_exit < mp_rv_ncpus) {
		if (!intrs_enabled)
			handle_pending_TLB_flushes();
		cpu_pause();
	}

	/* teardown function */
	if (mp_rv_teardown_func != NULL)
		mp_rv_teardown_func(mp_rv_func_arg);

	/* Bump completion count */
	atomic_incl(&mp_rv_complete, 1);
}

void
mp_rendezvous(void (*setup_func)(void *), 
	      void (*action_func)(void *),
	      void (*teardown_func)(void *),
	      void *arg)
{

	if (!smp_initialized) {
		if (setup_func != NULL)
			setup_func(arg);
		if (action_func != NULL)
			action_func(arg);
		if (teardown_func != NULL)
			teardown_func(arg);
		return;
	}
		
	/* obtain rendezvous lock */
	simple_lock(&mp_rv_lock);

	/* set static function pointers */
	mp_rv_setup_func = setup_func;
	mp_rv_action_func = action_func;
	mp_rv_teardown_func = teardown_func;
	mp_rv_func_arg = arg;

	mp_rv_entry    = 0;
	mp_rv_exit     = 0;
	mp_rv_complete = 0;

	/*
	 * signal other processors, which will call mp_rendezvous_action()
	 * with interrupts disabled
	 */
	simple_lock(&x86_topo_lock);
	mp_rv_ncpus = i386_active_cpus();
	i386_signal_cpus(MP_RENDEZVOUS, ASYNC);
	simple_unlock(&x86_topo_lock);

	/* call executor function on this cpu */
	mp_rendezvous_action();

	/*
	 * Spin for everyone to complete.
	 * This is necessary to ensure that all processors have proceeded
	 * from the exit barrier before we release the rendezvous structure.
	 */
	while (mp_rv_complete < mp_rv_ncpus) {
		cpu_pause();
	}
	
	/* Tidy up */
	mp_rv_setup_func = NULL;
	mp_rv_action_func = NULL;
	mp_rv_teardown_func = NULL;
	mp_rv_func_arg = NULL;

	/* release lock */
	simple_unlock(&mp_rv_lock);
}

void
mp_rendezvous_break_lock(void)
{
	simple_lock_init(&mp_rv_lock, 0);
}

static void
setup_disable_intrs(__unused void * param_not_used)
{
	/* disable interrupts before the first barrier */
	boolean_t intr = ml_set_interrupts_enabled(FALSE);

	current_cpu_datap()->cpu_iflag = intr;
	DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
}

static void
teardown_restore_intrs(__unused void * param_not_used)
{
	/* restore interrupt flag following MTRR changes */
	ml_set_interrupts_enabled(current_cpu_datap()->cpu_iflag);
	DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
}

/*
 * A wrapper to mp_rendezvous() to call action_func() with interrupts disabled.
 * This is exported for use by kexts.
 */
void
mp_rendezvous_no_intrs(
	      void (*action_func)(void *),
	      void *arg)
{
	mp_rendezvous(setup_disable_intrs,
		      action_func,
		      teardown_restore_intrs,
		      arg);	
}

void
handle_pending_TLB_flushes(void)
{
	volatile int	*my_word = &current_cpu_datap()->cpu_signals;

	if (i_bit(MP_TLB_FLUSH, my_word)) {
		DBGLOG(cpu_handle, cpu_number(), MP_TLB_FLUSH);
		i_bit_clear(MP_TLB_FLUSH, my_word);
		pmap_update_interrupt();
	}
}

/*
 * This is called from cpu_signal_handler() to process an MP_CALL signal.
 */
static void
mp_cpus_call_action(void)
{
	if (mp_rv_action_func != NULL)
		mp_rv_action_func(mp_rv_func_arg);
	atomic_incl(&mp_rv_complete, 1);
}

/*
 * mp_cpus_call() runs a given function on cpus specified in a given cpu mask.
 * If the mode is SYNC, the function is called serially on the target cpus
 * in logical cpu order. If the mode is ASYNC, the function is called in
 * parallel over the specified cpus.
 * The action function may be NULL.
 * The cpu mask may include the local cpu. Offline cpus are ignored.
 * Return does not occur until the function has completed on all cpus.
 * The return value is the number of cpus on which the function was called.
 */
cpu_t
mp_cpus_call(
	cpumask_t	cpus,
	mp_sync_t	mode,
        void		(*action_func)(void *),
        void		*arg)
{
	cpu_t		cpu;
	boolean_t	intrs_enabled = ml_get_interrupts_enabled();
	boolean_t	call_self = FALSE;

	if (!smp_initialized) {
		if ((cpus & CPUMASK_SELF) == 0)
			return 0;
		if (action_func != NULL) {
			(void) ml_set_interrupts_enabled(FALSE);
			action_func(arg);
			ml_set_interrupts_enabled(intrs_enabled);
		}
		return 1;
	}
		
	/* obtain rendezvous lock */
	simple_lock(&mp_rv_lock);

	/* Use the rendezvous data structures for this call */
	mp_rv_action_func = action_func;
	mp_rv_func_arg = arg;
	mp_rv_ncpus = 0;
	mp_rv_complete = 0;

	simple_lock(&x86_topo_lock);
	for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
		if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
		    !cpu_datap(cpu)->cpu_running)
			continue;
		if (cpu == (cpu_t) cpu_number()) {
			/*
			 * We don't IPI ourself and if calling asynchronously,
			 * we defer our call until we have signalled all others.
			 */
			call_self = TRUE;
			if (mode == SYNC && action_func != NULL) {
				(void) ml_set_interrupts_enabled(FALSE);
				action_func(arg);
				ml_set_interrupts_enabled(intrs_enabled);
			}
		} else {
			/*
			 * Bump count of other cpus called and signal this cpu.
			 * Note: we signal asynchronously regardless of mode
			 * because we wait on mp_rv_complete either here
			 * (if mode == SYNC) or later (if mode == ASYNC).
			 * While spinning, poll for TLB flushes if interrupts
			 * are disabled.
			 */
			mp_rv_ncpus++;
			i386_signal_cpu(cpu, MP_CALL, ASYNC);
			if (mode == SYNC) {
				simple_unlock(&x86_topo_lock);
				while (mp_rv_complete < mp_rv_ncpus) {
					if (!intrs_enabled)
						handle_pending_TLB_flushes();
					cpu_pause();
				}
				simple_lock(&x86_topo_lock);
			}
		}
	}
	simple_unlock(&x86_topo_lock);

	/*
	 * If calls are being made asynchronously,
	 * make the local call now if needed, and then
	 * wait for all other cpus to finish their calls.
	 */
	if (mode == ASYNC) {
		if (call_self && action_func != NULL) {
			(void) ml_set_interrupts_enabled(FALSE);
			action_func(arg);
			ml_set_interrupts_enabled(intrs_enabled);
		}
		while (mp_rv_complete < mp_rv_ncpus) {
			if (!intrs_enabled)
				handle_pending_TLB_flushes();
			cpu_pause();
		}
	}
	
	/* Determine the number of cpus called */
	cpu = mp_rv_ncpus + (call_self ? 1 : 0);

	simple_unlock(&mp_rv_lock);

	return cpu;
}

static void
mp_broadcast_action(void)
{
   /* call action function */
   if (mp_bc_action_func != NULL)
       mp_bc_action_func(mp_bc_func_arg);

   /* if we're the last one through, wake up the instigator */
   if (atomic_decl_and_test((volatile long *)&mp_bc_count, 1))
       thread_wakeup(((event_t)(unsigned int *) &mp_bc_count));
}

/*
 * mp_broadcast() runs a given function on all active cpus.
 * The caller blocks until the functions has run on all cpus.
 * The caller will also block if there is another pending braodcast.
 */
void
mp_broadcast(
         void (*action_func)(void *),
         void *arg)
{
   if (!smp_initialized) {
       if (action_func != NULL)
	           action_func(arg);
       return;
   }
       
   /* obtain broadcast lock */
   mutex_lock(&mp_bc_lock);

   /* set static function pointers */
   mp_bc_action_func = action_func;
   mp_bc_func_arg = arg;

   assert_wait(&mp_bc_count, THREAD_UNINT);

   /*
    * signal other processors, which will call mp_broadcast_action()
    */
   simple_lock(&x86_topo_lock);
   mp_bc_ncpus = i386_active_cpus();   /* total including this cpu */
   mp_bc_count = mp_bc_ncpus;
   i386_signal_cpus(MP_BROADCAST, ASYNC);

   /* call executor function on this cpu */
   mp_broadcast_action();
   simple_unlock(&x86_topo_lock);

   /* block for all cpus to have run action_func */
   if (mp_bc_ncpus > 1)
       thread_block(THREAD_CONTINUE_NULL);
   else
       clear_wait(current_thread(), THREAD_AWAKENED);
       
   /* release lock */
   mutex_unlock(&mp_bc_lock);
}

void
i386_activate_cpu(void)
{
	cpu_data_t	*cdp = current_cpu_datap();

	assert(!ml_get_interrupts_enabled());

	if (!smp_initialized) {
		cdp->cpu_running = TRUE;
		return;
	}

	simple_lock(&x86_topo_lock);
	cdp->cpu_running = TRUE;
	simple_unlock(&x86_topo_lock);
}

void
i386_deactivate_cpu(void)
{
	cpu_data_t	*cdp = current_cpu_datap();

	assert(!ml_get_interrupts_enabled());

	simple_lock(&x86_topo_lock);
	cdp->cpu_running = FALSE;
	simple_unlock(&x86_topo_lock);

	/*
	 * In case a rendezvous/braodcast/call was initiated to this cpu
	 * before we cleared cpu_running, we must perform any actions due.
	 */
	if (i_bit(MP_RENDEZVOUS, &cdp->cpu_signals))
		mp_rendezvous_action();
	if (i_bit(MP_BROADCAST, &cdp->cpu_signals))
		mp_broadcast_action();
	if (i_bit(MP_CALL, &cdp->cpu_signals))
		mp_cpus_call_action();
	cdp->cpu_signals = 0;			/* all clear */
}

int	pmsafe_debug	= 1;

#if	MACH_KDP
volatile boolean_t	mp_kdp_trap = FALSE;
volatile unsigned long		mp_kdp_ncpus;
boolean_t		mp_kdp_state;


void
mp_kdp_enter(void)
{
	unsigned int	cpu;
	unsigned int	ncpus;
	unsigned int	my_cpu = cpu_number();
	uint64_t	tsc_timeout;

	DBG("mp_kdp_enter()\n");

	/*
	 * Here to enter the debugger.
	 * In case of races, only one cpu is allowed to enter kdp after
	 * stopping others.
	 */
	mp_kdp_state = ml_set_interrupts_enabled(FALSE);
	simple_lock(&mp_kdp_lock);

	if (pmsafe_debug)
	    pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);

	while (mp_kdp_trap) {
		simple_unlock(&mp_kdp_lock);
		DBG("mp_kdp_enter() race lost\n");
		mp_kdp_wait(TRUE);
		simple_lock(&mp_kdp_lock);
	}
	mp_kdp_ncpus = 1;	/* self */
	mp_kdp_trap = TRUE;
	simple_unlock(&mp_kdp_lock);

	/*
	 * Deliver a nudge to other cpus, counting how many
	 */
	DBG("mp_kdp_enter() signaling other processors\n");
	if (force_immediate_debugger_NMI == FALSE) {
		for (ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
			if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
				continue;
			ncpus++;
			i386_signal_cpu(cpu, MP_KDP, ASYNC);
		}
		/*
		 * Wait other processors to synchronize
		 */
		DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n", ncpus);

		/*
		 * This timeout is rather arbitrary; we don't want to NMI
		 * processors that are executing at potentially
		 * "unsafe-to-interrupt" points such as the trampolines,
		 * but neither do we want to lose state by waiting too long.
		 */
		tsc_timeout = rdtsc64() + (ncpus * 1000 * 1000);

		while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
			/*
			 * A TLB shootdown request may be pending--this would
			 * result in the requesting processor waiting in
			 * PMAP_UPDATE_TLBS() until this processor deals with it.
			 * Process it, so it can now enter mp_kdp_wait()
			 */
			handle_pending_TLB_flushes();
			cpu_pause();
		}
		/* If we've timed out, and some processor(s) are still unresponsive,
		 * interrupt them with an NMI via the local APIC.
		 */
		if (mp_kdp_ncpus != ncpus) {
			for (cpu = 0; cpu < real_ncpus; cpu++) {
				if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
					continue;
				if (cpu_signal_pending(cpu, MP_KDP))
					cpu_NMI_interrupt(cpu);
			}
		}
	}
	else
		for (cpu = 0; cpu < real_ncpus; cpu++) {
			if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
				continue;
			cpu_NMI_interrupt(cpu);
		}

	DBG("mp_kdp_enter() %u processors done %s\n",
	    mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
	
	postcode(MP_KDP_ENTER);
}

static boolean_t
cpu_signal_pending(int cpu, mp_event_t event)
{
	volatile int	*signals = &cpu_datap(cpu)->cpu_signals;
	boolean_t retval = FALSE;

	if (i_bit(event, signals))
		retval = TRUE;
	return retval;
}
 

static void
mp_kdp_wait(boolean_t flush)
{
	DBG("mp_kdp_wait()\n");
	/* If an I/O port has been specified as a debugging aid, issue a read */
	panic_io_port_read();

	/* If we've trapped due to a machine-check, save MCA registers */
	mca_check_save();

	if (pmsafe_debug)
	    pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);

	atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
	while (mp_kdp_trap) {
	        /*
		 * A TLB shootdown request may be pending--this would result
		 * in the requesting processor waiting in PMAP_UPDATE_TLBS()
		 * until this processor handles it.
		 * Process it, so it can now enter mp_kdp_wait()
		 */
		if (flush)
			handle_pending_TLB_flushes();
		cpu_pause();
	}

	if (pmsafe_debug)
	    pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);

	atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
	DBG("mp_kdp_wait() done\n");
}

void
mp_kdp_exit(void)
{
	DBG("mp_kdp_exit()\n");
	atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
	mp_kdp_trap = FALSE;
	__asm__ volatile("mfence");

	/* Wait other processors to stop spinning. XXX needs timeout */
	DBG("mp_kdp_exit() waiting for processors to resume\n");
	while (mp_kdp_ncpus > 0) {
	        /*
		 * a TLB shootdown request may be pending... this would result in the requesting
		 * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
		 * Process it, so it can now enter mp_kdp_wait()
		 */
	        handle_pending_TLB_flushes();

		cpu_pause();
	}

	if (pmsafe_debug)
	    pmSafeMode(&current_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);

	DBG("mp_kdp_exit() done\n");
	(void) ml_set_interrupts_enabled(mp_kdp_state);
	postcode(0);
}
#endif	/* MACH_KDP */

/*ARGSUSED*/
void
init_ast_check(
	__unused processor_t	processor)
{
}

void
cause_ast_check(
	processor_t	processor)
{
	int	cpu = PROCESSOR_DATA(processor, slot_num);

	if (cpu != cpu_number()) {
		i386_signal_cpu(cpu, MP_AST, ASYNC);
	}
}

#if MACH_KDB
/*
 * invoke kdb on slave processors 
 */

void
remote_kdb(void)
{
	unsigned int	my_cpu = cpu_number();
	unsigned int	cpu;
	int kdb_ncpus;
	uint64_t tsc_timeout = 0;
	
	mp_kdb_trap = TRUE;
	mp_kdb_ncpus = 1;
	for (kdb_ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
		if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
			continue;
		kdb_ncpus++;
		i386_signal_cpu(cpu, MP_KDB, ASYNC);
	}
	DBG("remote_kdb() waiting for (%d) processors to suspend\n",kdb_ncpus);

	tsc_timeout = rdtsc64() + (kdb_ncpus * 100 * 1000 * 1000);

	while (mp_kdb_ncpus != kdb_ncpus && rdtsc64() < tsc_timeout) {
	        /*
		 * a TLB shootdown request may be pending... this would result in the requesting
		 * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
		 * Process it, so it can now enter mp_kdp_wait()
		 */
	        handle_pending_TLB_flushes();

		cpu_pause();
	}
	DBG("mp_kdp_enter() %d processors done %s\n",
		mp_kdb_ncpus, (mp_kdb_ncpus == kdb_ncpus) ? "OK" : "timed out");
}

static void
mp_kdb_wait(void)
{
	DBG("mp_kdb_wait()\n");

	/* If an I/O port has been specified as a debugging aid, issue a read */
	panic_io_port_read();

	atomic_incl(&mp_kdb_ncpus, 1);
	while (mp_kdb_trap) {
	        /*
		 * a TLB shootdown request may be pending... this would result in the requesting
		 * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
		 * Process it, so it can now enter mp_kdp_wait()
		 */
	        handle_pending_TLB_flushes();

		cpu_pause();
	}
	atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
	DBG("mp_kdb_wait() done\n");
}

/*
 * Clear kdb interrupt
 */

void
clear_kdb_intr(void)
{
	mp_disable_preemption();
	i_bit_clear(MP_KDB, &current_cpu_datap()->cpu_signals);
	mp_enable_preemption();
}

void
mp_kdb_exit(void)
{
	DBG("mp_kdb_exit()\n");
	atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
	mp_kdb_trap = FALSE;
	__asm__ volatile("mfence");

	while (mp_kdb_ncpus > 0) {
	        /*
		 * a TLB shootdown request may be pending... this would result in the requesting
		 * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
		 * Process it, so it can now enter mp_kdp_wait()
		 */
	        handle_pending_TLB_flushes();

		cpu_pause();
	}

	DBG("mp_kdb_exit() done\n");
}

#endif /* MACH_KDB */

/*
 * i386_init_slave() is called from pstart.
 * We're in the cpu's interrupt stack with interrupts disabled.
 * At this point we are in legacy mode. We need to switch on IA32e
 * if the mode is set to 64-bits.
 */
void
i386_init_slave(void)
{
	postcode(I386_INIT_SLAVE);

	/* Ensure that caching and write-through are enabled */
	set_cr0(get_cr0() & ~(CR0_NW|CR0_CD));

	DBG("i386_init_slave() CPU%d: phys (%d) active.\n",
		get_cpu_number(), get_cpu_phys_number());

	assert(!ml_get_interrupts_enabled());

	cpu_mode_init(current_cpu_datap());

	mca_cpu_init();

	lapic_init();
	LAPIC_DUMP();
	LAPIC_CPU_MAP_DUMP();

	init_fpu();

	mtrr_update_cpu();

	/* resume VT operation */
	vmx_resume();

	pat_init();

	cpu_thread_init();	/* not strictly necessary */

	cpu_init();	/* Sets cpu_running which starter cpu waits for */ 

	slave_main();

	panic("i386_init_slave() returned from slave_main()");
}

void
slave_machine_init(void)
{
	/*
 	 * Here in process context, but with interrupts disabled.
	 */
	DBG("slave_machine_init() CPU%d\n", get_cpu_number());

	clock_init();

	cpu_machine_init();		/* Interrupts enabled hereafter */
}

#undef cpu_number()
int cpu_number(void)
{
	return get_cpu_number();
}

#if	MACH_KDB
#include <ddb/db_output.h>

#define TRAP_DEBUG 0 /* Must match interrupt.s and spl.s */


#if	TRAP_DEBUG
#define MTRAPS 100
struct mp_trap_hist_struct {
	unsigned char type;
	unsigned char data[5];
} trap_hist[MTRAPS], *cur_trap_hist = trap_hist,
    *max_trap_hist = &trap_hist[MTRAPS];

void db_trap_hist(void);

/*
 * SPL:
 *	1: new spl
 *	2: old spl
 *	3: new tpr
 *	4: old tpr
 * INT:
 * 	1: int vec
 *	2: old spl
 *	3: new spl
 *	4: post eoi tpr
 *	5: exit tpr
 */

void
db_trap_hist(void)
{
	int i,j;
	for(i=0;i<MTRAPS;i++)
	    if (trap_hist[i].type == 1 || trap_hist[i].type == 2) {
		    db_printf("%s%s",
			      (&trap_hist[i]>=cur_trap_hist)?"*":" ",
			      (trap_hist[i].type == 1)?"SPL":"INT");
		    for(j=0;j<5;j++)
			db_printf(" %02x", trap_hist[i].data[j]);
		    db_printf("\n");
	    }
		
}
#endif	/* TRAP_DEBUG */
#endif	/* MACH_KDB */