Host.cpp   [plain text]


//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This header file implements the operating system Host concept.
//
//===----------------------------------------------------------------------===//

#include "llvm/System/Host.h"
#include "llvm/Config/config.h"
#include <string.h>

// Include the platform-specific parts of this class.
#ifdef LLVM_ON_UNIX
#include "Unix/Host.inc"
#endif
#ifdef LLVM_ON_WIN32
#include "Win32/Host.inc"
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif

//===----------------------------------------------------------------------===//
//
//  Implementations of the CPU detection routines
//
//===----------------------------------------------------------------------===//

using namespace llvm;

#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
 || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)

/// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments.  If we can't run cpuid on the host, return true.
static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX,
                            unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
  #if defined(__GNUC__)
    // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
    asm ("movq\t%%rbx, %%rsi\n\t"
         "cpuid\n\t"
         "xchgq\t%%rbx, %%rsi\n\t"
         : "=a" (*rEAX),
           "=S" (*rEBX),
           "=c" (*rECX),
           "=d" (*rEDX)
         :  "a" (value));
    return false;
  #elif defined(_MSC_VER)
    int registers[4];
    __cpuid(registers, value);
    *rEAX = registers[0];
    *rEBX = registers[1];
    *rECX = registers[2];
    *rEDX = registers[3];
    return false;
  #endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
  #if defined(__GNUC__)
    asm ("movl\t%%ebx, %%esi\n\t"
         "cpuid\n\t"
         "xchgl\t%%ebx, %%esi\n\t"
         : "=a" (*rEAX),
           "=S" (*rEBX),
           "=c" (*rECX),
           "=d" (*rEDX)
         :  "a" (value));
    return false;
  #elif defined(_MSC_VER)
    __asm {
      mov   eax,value
      cpuid
      mov   esi,rEAX
      mov   dword ptr [esi],eax
      mov   esi,rEBX
      mov   dword ptr [esi],ebx
      mov   esi,rECX
      mov   dword ptr [esi],ecx
      mov   esi,rEDX
      mov   dword ptr [esi],edx
    }
    return false;
  #endif
#endif
  return true;
}

static void DetectX86FamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
  Family = (EAX >> 8) & 0xf; // Bits 8 - 11
  Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
  if (Family == 6 || Family == 0xf) {
    if (Family == 0xf)
      // Examine extended family ID if family ID is F.
      Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
    // Examine extended model ID if family ID is 6 or F.
    Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
  }
}

std::string sys::getHostCPUName() {
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
  if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
    return "generic";
  unsigned Family = 0;
  unsigned Model  = 0;
  DetectX86FamilyModel(EAX, Family, Model);

  GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
  bool Em64T = (EDX >> 29) & 0x1;
  bool HasSSE3 = (ECX & 0x1);

  union {
    unsigned u[3];
    char     c[12];
  } text;

  GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
  if (memcmp(text.c, "GenuineIntel", 12) == 0) {
    switch (Family) {
    case 3:
      return "i386";
    case 4:
      switch (Model) {
      case 0: // Intel486TM DX processors
      case 1: // Intel486TM DX processors
      case 2: // Intel486 SX processors
      case 3: // Intel487TM processors, IntelDX2 OverDrive® processors,
              // IntelDX2TM processors
      case 4: // Intel486 SL processor
      case 5: // IntelSX2TM processors
      case 7: // Write-Back Enhanced IntelDX2 processors
      case 8: // IntelDX4 OverDrive processors, IntelDX4TM processors
      default: return "i486";
      }
    case 5:
      switch (Model) {
      case  1: // Pentium OverDrive processor for Pentium processor (60, 66),
               // Pentium® processors (60, 66)
      case  2: // Pentium OverDrive processor for Pentium processor (75, 90,
               // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
               // 150, 166, 200)
      case  3: // Pentium OverDrive processors for Intel486 processor-based
               // systems
        return "pentium";

      case  4: // Pentium OverDrive processor with MMXTM technology for Pentium
               // processor (75, 90, 100, 120, 133), Pentium processor with
               // MMXTM technology (166, 200)
        return "pentium-mmx";

      default: return "pentium";
      }
    case 6:
      switch (Model) {
      case  1: // Pentium Pro processor
        return "pentiumpro";

      case  3: // Intel Pentium II OverDrive processor, Pentium II processor,
               // model 03
      case  5: // Pentium II processor, model 05, Pentium II Xeon processor,
               // model 05, and Intel® Celeron® processor, model 05
      case  6: // Celeron processor, model 06
        return "pentium2";

      case  7: // Pentium III processor, model 07, and Pentium III Xeon
               // processor, model 07
      case  8: // Pentium III processor, model 08, Pentium III Xeon processor,
               // model 08, and Celeron processor, model 08
      case 10: // Pentium III Xeon processor, model 0Ah
      case 11: // Pentium III processor, model 0Bh
        return "pentium3";

      case  9: // Intel Pentium M processor, Intel Celeron M processor model 09.
      case 13: // Intel Pentium M processor, Intel Celeron M processor, model
               // 0Dh. All processors are manufactured using the 90 nm process.
        return "pentium-m";

      case 14: // Intel CoreTM Duo processor, Intel CoreTM Solo processor, model
               // 0Eh. All processors are manufactured using the 65 nm process.
        return "yonah";

      case 15: // Intel CoreTM2 Duo processor, Intel CoreTM2 Duo mobile
               // processor, Intel CoreTM2 Quad processor, Intel CoreTM2 Quad
               // mobile processor, Intel CoreTM2 Extreme processor, Intel
               // Pentium Dual-Core processor, Intel Xeon processor, model
               // 0Fh. All processors are manufactured using the 65 nm process.
      case 22: // Intel Celeron processor model 16h. All processors are
               // manufactured using the 65 nm process
        return "core2";

      case 21: // Intel EP80579 Integrated Processor and Intel EP80579
               // Integrated Processor with Intel QuickAssist Technology
        return "i686"; // FIXME: ???

      case 23: // Intel CoreTM2 Extreme processor, Intel Xeon processor, model
               // 17h. All processors are manufactured using the 45 nm process.
               //
               // 45nm: Penryn , Wolfdale, Yorkfield (XE)
        return "penryn";

      case 26: // Intel Core i7 processor and Intel Xeon processor. All
               // processors are manufactured using the 45 nm process.
      case 29: // Intel Xeon processor MP. All processors are manufactured using
               // the 45 nm process.
        return "corei7";

      case 28: // Intel Atom processor. All processors are manufactured using
               // the 45 nm process
        return "atom";

      default: return "i686";
      }
    case 15: {
      switch (Model) {
      case  0: // Pentium 4 processor, Intel Xeon processor. All processors are
               // model 00h and manufactured using the 0.18 micron process.
      case  1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
               // processor MP, and Intel Celeron processor. All processors are
               // model 01h and manufactured using the 0.18 micron process.
      case  2: // Pentium 4 processor, Mobile Intel Pentium 4 processor – M,
               // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
               // processor, and Mobile Intel Celeron processor. All processors
               // are model 02h and manufactured using the 0.13 micron process.
        return (Em64T) ? "x86-64" : "pentium4";

      case  3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
               // processor. All processors are model 03h and manufactured using
               // the 90 nm process.
      case  4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
               // Pentium D processor, Intel Xeon processor, Intel Xeon
               // processor MP, Intel Celeron D processor. All processors are
               // model 04h and manufactured using the 90 nm process.
      case  6: // Pentium 4 processor, Pentium D processor, Pentium processor
               // Extreme Edition, Intel Xeon processor, Intel Xeon processor
               // MP, Intel Celeron D processor. All processors are model 06h
               // and manufactured using the 65 nm process.
        return (Em64T) ? "nocona" : "prescott";

      default:
        return (Em64T) ? "x86-64" : "pentium4";
      }
    }

    default:
      return "generic";
    }
  } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
    // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
    // appears to be no way to generate the wide variety of AMD-specific targets
    // from the information returned from CPUID.
    switch (Family) {
      case 4:
        return "i486";
      case 5:
        switch (Model) {
        case 6:
        case 7:  return "k6";
        case 8:  return "k6-2";
        case 9:
        case 13: return "k6-3";
        default: return "pentium";
        }
      case 6:
        switch (Model) {
        case 4:  return "athlon-tbird";
        case 6:
        case 7:
        case 8:  return "athlon-mp";
        case 10: return "athlon-xp";
        default: return "athlon";
        }
      case 15:
        if (HasSSE3) {
          return "k8-sse3";
        } else {
          switch (Model) {
          case 1:  return "opteron";
          case 5:  return "athlon-fx"; // also opteron
          default: return "athlon64";
          }
        }
      case 16:
        return "amdfam10";
    default:
      return "generic";
    }
  }
  return "generic";
}
#else
std::string sys::getHostCPUName() {
  return "generic";
}
#endif

bool sys::getHostCPUFeatures(StringMap<bool> &Features){
  return false;
}