;; libgcc routines for the Renesas H8/300 CPU. ;; Contributed by Steve Chamberlain ;; Optimizations by Toshiyasu Morita /* Copyright (C) 1994, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Assembler register definitions. */ #define A0 r0 #define A0L r0l #define A0H r0h #define A1 r1 #define A1L r1l #define A1H r1h #define A2 r2 #define A2L r2l #define A2H r2h #define A3 r3 #define A3L r3l #define A3H r3h #define S0 r4 #define S0L r4l #define S0H r4h #define S1 r5 #define S1L r5l #define S1H r5h #define S2 r6 #define S2L r6l #define S2H r6h #ifdef __H8300__ #define PUSHP push #define POPP pop #define A0P r0 #define A1P r1 #define A2P r2 #define A3P r3 #define S0P r4 #define S1P r5 #define S2P r6 #endif #if defined (__H8300H__) || defined (__H8300S__) || defined (__H8300SX__) #define PUSHP push.l #define POPP pop.l #define A0P er0 #define A1P er1 #define A2P er2 #define A3P er3 #define S0P er4 #define S1P er5 #define S2P er6 #define A0E e0 #define A1E e1 #define A2E e2 #define A3E e3 #endif #ifdef __H8300H__ #ifdef __NORMAL_MODE__ .h8300hn #else .h8300h #endif #endif #ifdef __H8300S__ #ifdef __NORMAL_MODE__ .h8300sn #else .h8300s #endif #endif #ifdef __H8300SX__ #ifdef __NORMAL_MODE__ .h8300sxn #else .h8300sx #endif #endif #ifdef L_cmpsi2 #ifdef __H8300__ .section .text .align 2 .global ___cmpsi2 ___cmpsi2: cmp.w A0,A2 bne .L2 cmp.w A1,A3 bne .L4 mov.w #1,A0 rts .L2: bgt .L5 .L3: mov.w #2,A0 rts .L4: bls .L3 .L5: sub.w A0,A0 rts .end #endif #endif /* L_cmpsi2 */ #ifdef L_ucmpsi2 #ifdef __H8300__ .section .text .align 2 .global ___ucmpsi2 ___ucmpsi2: cmp.w A0,A2 bne .L2 cmp.w A1,A3 bne .L4 mov.w #1,A0 rts .L2: bhi .L5 .L3: mov.w #2,A0 rts .L4: bls .L3 .L5: sub.w A0,A0 rts .end #endif #endif /* L_ucmpsi2 */ #ifdef L_divhi3 ;; HImode divides for the H8/300. ;; We bunch all of this into one object file since there are several ;; "supporting routines". ; general purpose normalize routine ; ; divisor in A0 ; dividend in A1 ; turns both into +ve numbers, and leaves what the answer sign ; should be in A2L #ifdef __H8300__ .section .text .align 2 divnorm: or A0H,A0H ; is divisor > 0 stc ccr,A2L bge _lab1 not A0H ; no - then make it +ve not A0L adds #1,A0 _lab1: or A1H,A1H ; look at dividend bge _lab2 not A1H ; it is -ve, make it positive not A1L adds #1,A1 xor #0x8,A2L; and toggle sign of result _lab2: rts ;; Basically the same, except that the sign of the divisor determines ;; the sign. modnorm: or A0H,A0H ; is divisor > 0 stc ccr,A2L bge _lab7 not A0H ; no - then make it +ve not A0L adds #1,A0 _lab7: or A1H,A1H ; look at dividend bge _lab8 not A1H ; it is -ve, make it positive not A1L adds #1,A1 _lab8: rts ; A0=A0/A1 signed .global ___divhi3 ___divhi3: bsr divnorm bsr ___udivhi3 negans: btst #3,A2L ; should answer be negative ? beq _lab4 not A0H ; yes, so make it so not A0L adds #1,A0 _lab4: rts ; A0=A0%A1 signed .global ___modhi3 ___modhi3: bsr modnorm bsr ___udivhi3 mov A3,A0 bra negans ; A0=A0%A1 unsigned .global ___umodhi3 ___umodhi3: bsr ___udivhi3 mov A3,A0 rts ; A0=A0/A1 unsigned ; A3=A0%A1 unsigned ; A2H trashed ; D high 8 bits of denom ; d low 8 bits of denom ; N high 8 bits of num ; n low 8 bits of num ; M high 8 bits of mod ; m low 8 bits of mod ; Q high 8 bits of quot ; q low 8 bits of quot ; P preserve ; The H8/300 only has a 16/8 bit divide, so we look at the incoming and ; see how to partition up the expression. .global ___udivhi3 ___udivhi3: ; A0 A1 A2 A3 ; Nn Dd P sub.w A3,A3 ; Nn Dd xP 00 or A1H,A1H bne divlongway or A0H,A0H beq _lab6 ; we know that D == 0 and N is != 0 mov.b A0H,A3L ; Nn Dd xP 0N divxu A1L,A3 ; MQ mov.b A3L,A0H ; Q ; dealt with N, do n _lab6: mov.b A0L,A3L ; n divxu A1L,A3 ; mq mov.b A3L,A0L ; Qq mov.b A3H,A3L ; m mov.b #0x0,A3H ; Qq 0m rts ; D != 0 - which means the denominator is ; loop around to get the result. divlongway: mov.b A0H,A3L ; Nn Dd xP 0N mov.b #0x0,A0H ; high byte of answer has to be zero mov.b #0x8,A2H ; 8 div8: add.b A0L,A0L ; n*=2 rotxl A3L ; Make remainder bigger rotxl A3H sub.w A1,A3 ; Q-=N bhs setbit ; set a bit ? add.w A1,A3 ; no : too far , Q+=N dec A2H bne div8 ; next bit rts setbit: inc A0L ; do insert bit dec A2H bne div8 ; next bit rts #endif /* __H8300__ */ #endif /* L_divhi3 */ #ifdef L_divsi3 ;; 4 byte integer divides for the H8/300. ;; ;; We have one routine which does all the work and lots of ;; little ones which prepare the args and massage the sign. ;; We bunch all of this into one object file since there are several ;; "supporting routines". .section .text .align 2 ; Put abs SIs into r0/r1 and r2/r3, and leave a 1 in r6l with sign of rest. ; This function is here to keep branch displacements small. #ifdef __H8300__ divnorm: mov.b A0H,A0H ; is the numerator -ve stc ccr,S2L ; keep the sign in bit 3 of S2L bge postive ; negate arg not A0H not A1H not A0L not A1L add #1,A1L addx #0,A1H addx #0,A0L addx #0,A0H postive: mov.b A2H,A2H ; is the denominator -ve bge postive2 not A2L not A2H not A3L not A3H add.b #1,A3L addx #0,A3H addx #0,A2L addx #0,A2H xor.b #0x08,S2L ; toggle the result sign postive2: rts ;; Basically the same, except that the sign of the divisor determines ;; the sign. modnorm: mov.b A0H,A0H ; is the numerator -ve stc ccr,S2L ; keep the sign in bit 3 of S2L bge mpostive ; negate arg not A0H not A1H not A0L not A1L add #1,A1L addx #0,A1H addx #0,A0L addx #0,A0H mpostive: mov.b A2H,A2H ; is the denominator -ve bge mpostive2 not A2L not A2H not A3L not A3H add.b #1,A3L addx #0,A3H addx #0,A2L addx #0,A2H mpostive2: rts #else /* __H8300H__ */ divnorm: mov.l A0P,A0P ; is the numerator -ve stc ccr,S2L ; keep the sign in bit 3 of S2L bge postive neg.l A0P ; negate arg postive: mov.l A1P,A1P ; is the denominator -ve bge postive2 neg.l A1P ; negate arg xor.b #0x08,S2L ; toggle the result sign postive2: rts ;; Basically the same, except that the sign of the divisor determines ;; the sign. modnorm: mov.l A0P,A0P ; is the numerator -ve stc ccr,S2L ; keep the sign in bit 3 of S2L bge mpostive neg.l A0P ; negate arg mpostive: mov.l A1P,A1P ; is the denominator -ve bge mpostive2 neg.l A1P ; negate arg mpostive2: rts #endif ; numerator in A0/A1 ; denominator in A2/A3 .global ___modsi3 ___modsi3: #ifdef __H8300__ PUSHP S2P PUSHP S0P PUSHP S1P bsr modnorm bsr divmodsi4 mov S0,A0 mov S1,A1 bra exitdiv #else PUSHP S2P bsr modnorm bsr ___udivsi3 mov.l er3,er0 bra exitdiv #endif ;; H8/300H and H8S version of ___udivsi3 is defined later in ;; the file. #ifdef __H8300__ .global ___udivsi3 ___udivsi3: PUSHP S2P PUSHP S0P PUSHP S1P bsr divmodsi4 bra reti #endif .global ___umodsi3 ___umodsi3: #ifdef __H8300__ PUSHP S2P PUSHP S0P PUSHP S1P bsr divmodsi4 mov S0,A0 mov S1,A1 bra reti #else bsr ___udivsi3 mov.l er3,er0 rts #endif .global ___divsi3 ___divsi3: #ifdef __H8300__ PUSHP S2P PUSHP S0P PUSHP S1P jsr divnorm jsr divmodsi4 #else PUSHP S2P jsr divnorm bsr ___udivsi3 #endif ; examine what the sign should be exitdiv: btst #3,S2L beq reti ; should be -ve #ifdef __H8300__ not A0H not A1H not A0L not A1L add #1,A1L addx #0,A1H addx #0,A0L addx #0,A0H #else /* __H8300H__ */ neg.l A0P #endif reti: #ifdef __H8300__ POPP S1P POPP S0P #endif POPP S2P rts ; takes A0/A1 numerator (A0P for H8/300H) ; A2/A3 denominator (A1P for H8/300H) ; returns A0/A1 quotient (A0P for H8/300H) ; S0/S1 remainder (S0P for H8/300H) ; trashes S2H #ifdef __H8300__ divmodsi4: sub.w S0,S0 ; zero play area mov.w S0,S1 mov.b A2H,S2H or A2L,S2H or A3H,S2H bne DenHighNonZero mov.b A0H,A0H bne NumByte0Zero mov.b A0L,A0L bne NumByte1Zero mov.b A1H,A1H bne NumByte2Zero bra NumByte3Zero NumByte0Zero: mov.b A0H,S1L divxu A3L,S1 mov.b S1L,A0H NumByte1Zero: mov.b A0L,S1L divxu A3L,S1 mov.b S1L,A0L NumByte2Zero: mov.b A1H,S1L divxu A3L,S1 mov.b S1L,A1H NumByte3Zero: mov.b A1L,S1L divxu A3L,S1 mov.b S1L,A1L mov.b S1H,S1L mov.b #0x0,S1H rts ; have to do the divide by shift and test DenHighNonZero: mov.b A0H,S1L mov.b A0L,A0H mov.b A1H,A0L mov.b A1L,A1H mov.b #0,A1L mov.b #24,S2H ; only do 24 iterations nextbit: add.w A1,A1 ; double the answer guess rotxl A0L rotxl A0H rotxl S1L ; double remainder rotxl S1H rotxl S0L rotxl S0H sub.w A3,S1 ; does it all fit subx A2L,S0L subx A2H,S0H bhs setone add.w A3,S1 ; no, restore mistake addx A2L,S0L addx A2H,S0H dec S2H bne nextbit rts setone: inc A1L dec S2H bne nextbit rts #else /* __H8300H__ */ ;; This function also computes the remainder and stores it in er3. .global ___udivsi3 ___udivsi3: mov.w A1E,A1E ; denominator top word 0? bne DenHighNonZero ; do it the easy way, see page 107 in manual mov.w A0E,A2 extu.l A2P divxu.w A1,A2P mov.w A2E,A0E divxu.w A1,A0P mov.w A0E,A3 mov.w A2,A0E extu.l A3P rts ; er0 = er0 / er1 ; er3 = er0 % er1 ; trashes er1 er2 ; expects er1 >= 2^16 DenHighNonZero: mov.l er0,er3 mov.l er1,er2 #ifdef __H8300H__ divmod_L21: shlr.l er0 shlr.l er2 ; make divisor < 2^16 mov.w e2,e2 bne divmod_L21 #else shlr.l #2,er2 ; make divisor < 2^16 mov.w e2,e2 beq divmod_L22A divmod_L21: shlr.l #2,er0 divmod_L22: shlr.l #2,er2 ; make divisor < 2^16 mov.w e2,e2 bne divmod_L21 divmod_L22A: rotxl.w r2 bcs divmod_L23 shlr.l er0 bra divmod_L24 divmod_L23: rotxr.w r2 shlr.l #2,er0 divmod_L24: #endif ;; At this point, ;; er0 contains shifted dividend ;; er1 contains divisor ;; er2 contains shifted divisor ;; er3 contains dividend, later remainder divxu.w r2,er0 ; r0 now contains the approximate quotient (AQ) extu.l er0 beq divmod_L25 subs #1,er0 ; er0 = AQ - 1 mov.w e1,r2 mulxu.w r0,er2 ; er2 = upper (AQ - 1) * divisor sub.w r2,e3 ; dividend - 65536 * er2 mov.w r1,r2 mulxu.w r0,er2 ; compute er3 = remainder (tentative) sub.l er2,er3 ; er3 = dividend - (AQ - 1) * divisor divmod_L25: cmp.l er1,er3 ; is divisor < remainder? blo divmod_L26 adds #1,er0 sub.l er1,er3 ; correct the remainder divmod_L26: rts #endif #endif /* L_divsi3 */ #ifdef L_mulhi3 ;; HImode multiply. ; The H8/300 only has an 8*8->16 multiply. ; The answer is the same as: ; ; product = (srca.l * srcb.l) + ((srca.h * srcb.l) + (srcb.h * srca.l)) * 256 ; (we can ignore A1.h * A0.h cause that will all off the top) ; A0 in ; A1 in ; A0 answer #ifdef __H8300__ .section .text .align 2 .global ___mulhi3 ___mulhi3: mov.b A1L,A2L ; A2l gets srcb.l mulxu A0L,A2 ; A2 gets first sub product mov.b A0H,A3L ; prepare for mulxu A1L,A3 ; second sub product add.b A3L,A2H ; sum first two terms mov.b A1H,A3L ; third sub product mulxu A0L,A3 add.b A3L,A2H ; almost there mov.w A2,A0 ; that is rts #endif #endif /* L_mulhi3 */ #ifdef L_mulsi3 ;; SImode multiply. ;; ;; I think that shift and add may be sufficient for this. Using the ;; supplied 8x8->16 would need 10 ops of 14 cycles each + overhead. This way ;; the inner loop uses maybe 20 cycles + overhead, but terminates ;; quickly on small args. ;; ;; A0/A1 src_a ;; A2/A3 src_b ;; ;; while (a) ;; { ;; if (a & 1) ;; r += b; ;; a >>= 1; ;; b <<= 1; ;; } .section .text .align 2 #ifdef __H8300__ .global ___mulsi3 ___mulsi3: PUSHP S0P PUSHP S1P sub.w S0,S0 sub.w S1,S1 ; while (a) _top: mov.w A0,A0 bne _more mov.w A1,A1 beq _done _more: ; if (a & 1) bld #0,A1L bcc _nobit ; r += b add.w A3,S1 addx A2L,S0L addx A2H,S0H _nobit: ; a >>= 1 shlr A0H rotxr A0L rotxr A1H rotxr A1L ; b <<= 1 add.w A3,A3 addx A2L,A2L addx A2H,A2H bra _top _done: mov.w S0,A0 mov.w S1,A1 POPP S1P POPP S0P rts #else /* __H8300H__ */ ; ; mulsi3 for H8/300H - based on Renesas SH implementation ; ; by Toshiyasu Morita ; ; Old code: ; ; 16b * 16b = 372 states (worst case) ; 32b * 32b = 724 states (worst case) ; ; New code: ; ; 16b * 16b = 48 states ; 16b * 32b = 72 states ; 32b * 32b = 92 states ; .global ___mulsi3 ___mulsi3: mov.w r1,r2 ; ( 2 states) b * d mulxu r0,er2 ; (22 states) mov.w e0,r3 ; ( 2 states) a * d beq L_skip1 ; ( 4 states) mulxu r1,er3 ; (22 states) add.w r3,e2 ; ( 2 states) L_skip1: mov.w e1,r3 ; ( 2 states) c * b beq L_skip2 ; ( 4 states) mulxu r0,er3 ; (22 states) add.w r3,e2 ; ( 2 states) L_skip2: mov.l er2,er0 ; ( 2 states) rts ; (10 states) #endif #endif /* L_mulsi3 */ #ifdef L_fixunssfsi_asm /* For the h8300 we use asm to save some bytes, to allow more programs to fit into the tiny address space. For the H8/300H and H8S, the C version is good enough. */ #ifdef __H8300__ /* We still treat NANs different than libgcc2.c, but then, the behavior is undefined anyways. */ .global ___fixunssfsi ___fixunssfsi: cmp.b #0x4f,r0h bge Large_num jmp @___fixsfsi Large_num: bhi L_huge_num xor.b #0x80,A0L bmi L_shift8 L_huge_num: mov.w #65535,A0 mov.w A0,A1 rts L_shift8: mov.b A0L,A0H mov.b A1H,A0L mov.b A1L,A1H mov.b #0,A1L rts #endif #endif /* L_fixunssfsi_asm */