GDBRemoteRegisterContext.cpp   [plain text]


//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "GDBRemoteRegisterContext.h"

// C Includes
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Utility/Utils.h"
// Project includes
#include "Utility/StringExtractorGDBRemote.h"
#include "ProcessGDBRemote.h"
#include "ProcessGDBRemoteLog.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_GCC_Registers.h"
#include "Utility/ARM_DWARF_Registers.h"

using namespace lldb;
using namespace lldb_private;

//----------------------------------------------------------------------
// GDBRemoteRegisterContext constructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::GDBRemoteRegisterContext
(
    ThreadGDBRemote &thread,
    uint32_t concrete_frame_idx,
    GDBRemoteDynamicRegisterInfo &reg_info,
    bool read_all_at_once
) :
    RegisterContext (thread, concrete_frame_idx),
    m_reg_info (reg_info),
    m_reg_valid (),
    m_reg_data (),
    m_read_all_at_once (read_all_at_once)
{
    // Resize our vector of bools to contain one bool for every register.
    // We will use these boolean values to know when a register value
    // is valid in m_reg_data.
    m_reg_valid.resize (reg_info.GetNumRegisters());

    // Make a heap based buffer that is big enough to store all registers
    DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
    m_reg_data.SetData (reg_data_sp);

}

//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
{
}

void
GDBRemoteRegisterContext::InvalidateAllRegisters ()
{
    SetAllRegisterValid (false);
}

void
GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
{
    std::vector<bool>::iterator pos, end = m_reg_valid.end();
    for (pos = m_reg_valid.begin(); pos != end; ++pos)
        *pos = b;
}

size_t
GDBRemoteRegisterContext::GetRegisterCount ()
{
    return m_reg_info.GetNumRegisters ();
}

const RegisterInfo *
GDBRemoteRegisterContext::GetRegisterInfoAtIndex (uint32_t reg)
{
    return m_reg_info.GetRegisterInfoAtIndex (reg);
}

size_t
GDBRemoteRegisterContext::GetRegisterSetCount ()
{
    return m_reg_info.GetNumRegisterSets ();
}



const RegisterSet *
GDBRemoteRegisterContext::GetRegisterSet (uint32_t reg_set)
{
    return m_reg_info.GetRegisterSet (reg_set);
}



bool
GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
{
    // Read the register
    if (ReadRegisterBytes (reg_info, m_reg_data))
    {
        const bool partial_data_ok = false;
        Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
        return error.Success();
    }
    return false;
}

bool
GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
{
    const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
    if (reg_info == NULL)
        return false;

    // Invalidate if needed
    InvalidateIfNeeded(false);

    const uint32_t reg_byte_size = reg_info->byte_size;
    const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
    bool success = bytes_copied == reg_byte_size;
    if (success)
    {
        m_reg_valid[reg] = true;
    }
    else if (bytes_copied > 0)
    {
        // Only set register is valid to false if we copied some bytes, else
        // leave it as it was.
        m_reg_valid[reg] = false;
    }
    return success;
}

// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
bool
GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
                                                GDBRemoteCommunicationClient &gdb_comm)
{
    char packet[64];
    StringExtractorGDBRemote response;
    int packet_len = 0;
    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
    if (gdb_comm.GetThreadSuffixSupported())
        packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4" PRIx64 ";", reg, m_thread.GetID());
    else
        packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
    assert (packet_len < (sizeof(packet) - 1));
    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
        return PrivateSetRegisterValue (reg, response);

    return false;
}
bool
GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
{
    ExecutionContext exe_ctx (CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == NULL || thread == NULL)
        return false;

    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());

    InvalidateIfNeeded(false);

    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

    if (!m_reg_valid[reg])
    {
        Mutex::Locker locker;
        if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read register."))
        {
            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
            ProcessSP process_sp (m_thread.GetProcess());
            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
            {
                char packet[64];
                StringExtractorGDBRemote response;
                int packet_len = 0;
                if (m_read_all_at_once)
                {
                    // Get all registers in one packet
                    if (thread_suffix_supported)
                        packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64 ";", m_thread.GetID());
                    else
                        packet_len = ::snprintf (packet, sizeof(packet), "g");
                    assert (packet_len < (sizeof(packet) - 1));
                    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
                    {
                        if (response.IsNormalResponse())
                            if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
                                SetAllRegisterValid (true);
                    }
                }
                else if (!reg_info->value_regs)
                {
                    // Get each register individually
                    GetPrimordialRegister(reg_info, gdb_comm);
                }
                else
                {
                    // Process this composite register request by delegating to the constituent
                    // primordial registers.

                    // Index of the primordial register.
                    uint32_t prim_reg_idx;
                    bool success = true;
                    for (uint32_t idx = 0;
                         (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM;
                         ++idx)
                    {
                        // We have a valid primordial regsiter as our constituent.
                        // Grab the corresponding register info.
                        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
                        if (!GetPrimordialRegister(prim_reg_info, gdb_comm))
                        {
                            success = false;
                            // Some failure occurred.  Let's break out of the for loop.
                            break;
                        }
                    }
                    if (success)
                    {
                        // If we reach this point, all primordial register requests have succeeded.
                        // Validate this composite register.
                        m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = true;
                    }
                }
            }
        }
        else
        {
            LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
#if LLDB_CONFIGURATION_DEBUG
            StreamString strm;
            gdb_comm.DumpHistory(strm);
            Host::SetCrashDescription (strm.GetData());
            assert (!"Didn't get sequence mutex for read register.");
#else
            if (log)
            {
                if (log->GetVerbose())
                {
                    StreamString strm;
                    gdb_comm.DumpHistory(strm);
                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData());
                }
                else
                {
                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name);
                }
            }
#endif
        }

        // Make sure we got a valid register value after reading it
        if (!m_reg_valid[reg])
            return false;
    }

    if (&data != &m_reg_data)
    {
        // If we aren't extracting into our own buffer (which
        // only happens when this function is called from
        // ReadRegisterValue(uint32_t, Scalar&)) then
        // we transfer bytes from our buffer into the data
        // buffer that was passed in
        data.SetByteOrder (m_reg_data.GetByteOrder());
        data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
    }
    return true;
}

bool
GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
                                         const RegisterValue &value)
{
    DataExtractor data;
    if (value.GetData (data))
        return WriteRegisterBytes (reg_info, data, 0);
    return false;
}

// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
bool
GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
                                                GDBRemoteCommunicationClient &gdb_comm)
{
    StreamString packet;
    StringExtractorGDBRemote response;
    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
    packet.Printf ("P%x=", reg);
    packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
                              reg_info->byte_size,
                              lldb::endian::InlHostByteOrder(),
                              lldb::endian::InlHostByteOrder());

    if (gdb_comm.GetThreadSuffixSupported())
        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetID());

    // Invalidate just this register
    m_reg_valid[reg] = false;
    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                              packet.GetString().size(),
                                              response,
                                              false))
    {
        if (response.IsOKResponse())
            return true;
    }
    return false;
}

void
GDBRemoteRegisterContext::SyncThreadState(Process *process)
{
    // NB.  We assume our caller has locked the sequence mutex.
    
    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
    if (!gdb_comm.GetSyncThreadStateSupported())
        return;

    StreamString packet;
    StringExtractorGDBRemote response;
    packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetID());
    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                              packet.GetString().size(),
                                              response,
                                              false))
    {
        if (response.IsOKResponse())
            InvalidateAllRegisters();
    }
}

bool
GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
{
    ExecutionContext exe_ctx (CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == NULL || thread == NULL)
        return false;

    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
// FIXME: This check isn't right because IsRunning checks the Public state, but this
// is work you need to do - for instance in ShouldStop & friends - before the public
// state has been changed.
//    if (gdb_comm.IsRunning())
//        return false;

    // Grab a pointer to where we are going to put this register
    uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));

    if (dst == NULL)
        return false;


    if (data.CopyByteOrderedData (data_offset,                  // src offset
                                  reg_info->byte_size,          // src length
                                  dst,                          // dst
                                  reg_info->byte_size,          // dst length
                                  m_reg_data.GetByteOrder()))   // dst byte order
    {
        Mutex::Locker locker;
        if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
        {
            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
            ProcessSP process_sp (m_thread.GetProcess());
            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
            {
                StreamString packet;
                StringExtractorGDBRemote response;
                if (m_read_all_at_once)
                {
                    // Set all registers in one packet
                    packet.PutChar ('G');
                    packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
                                              m_reg_data.GetByteSize(),
                                              lldb::endian::InlHostByteOrder(),
                                              lldb::endian::InlHostByteOrder());

                    if (thread_suffix_supported)
                        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetID());

                    // Invalidate all register values
                    InvalidateIfNeeded (true);

                    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                                              packet.GetString().size(),
                                                              response,
                                                              false))
                    {
                        SetAllRegisterValid (false);
                        if (response.IsOKResponse())
                        {
                            return true;
                        }
                    }
                }
                else if (!reg_info->value_regs)
                {
                    // Set each register individually
                    return SetPrimordialRegister(reg_info, gdb_comm);
                }
                else
                {
                    // Process this composite register request by delegating to the constituent
                    // primordial registers.

                    // Invalidate this composite register first.
                    m_reg_valid[reg_info->kinds[eRegisterKindLLDB]] = false;

                    // Index of the primordial register.
                    uint32_t prim_reg_idx;
                    // For loop index.
                    uint32_t idx;

                    // Invalidate the invalidate_regs, if present.
                    if (reg_info->invalidate_regs)
                    {
                        for (idx = 0;
                             (prim_reg_idx = reg_info->invalidate_regs[idx]) != LLDB_INVALID_REGNUM;
                             ++idx)
                        {
                            // Grab the invalidate register info.
                            const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
                            m_reg_valid[prim_reg_info->kinds[eRegisterKindLLDB]] = false;
                        }
                    }

                    bool success = true;
                    for (idx = 0;
                         (prim_reg_idx = reg_info->value_regs[idx]) != LLDB_INVALID_REGNUM;
                         ++idx)
                    {
                        // We have a valid primordial regsiter as our constituent.
                        // Grab the corresponding register info.
                        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg_idx);
                        if (!SetPrimordialRegister(prim_reg_info, gdb_comm))
                        {
                            success = false;
                            // Some failure occurred.  Let's break out of the for loop.
                            break;
                        }
                    }
                    return success;
                }
            }
        }
        else
        {
            LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
            if (log)
            {
                if (log->GetVerbose())
                {
                    StreamString strm;
                    gdb_comm.DumpHistory(strm);
                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
                }
                else
                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
            }
        }
    }
    return false;
}


bool
GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
{
    ExecutionContext exe_ctx (CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == NULL || thread == NULL)
        return false;

    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());

    StringExtractorGDBRemote response;

    Mutex::Locker locker;
    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
    {
        SyncThreadState(process);
        
        char packet[32];
        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
        ProcessSP process_sp (m_thread.GetProcess());
        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
        {
            int packet_len = 0;
            if (thread_suffix_supported)
                packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetID());
            else
                packet_len = ::snprintf (packet, sizeof(packet), "g");
            assert (packet_len < (sizeof(packet) - 1));

            if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
            {
                if (response.IsErrorResponse())
                    return false;

                std::string &response_str = response.GetStringRef();
                if (isxdigit(response_str[0]))
                {
                    response_str.insert(0, 1, 'G');
                    if (thread_suffix_supported)
                    {
                        char thread_id_cstr[64];
                        ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetID());
                        response_str.append (thread_id_cstr);
                    }
                    data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
                    return true;
                }
            }
        }
    }
    else
    {
        LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
        if (log)
        {
            if (log->GetVerbose())
            {
                StreamString strm;
                gdb_comm.DumpHistory(strm);
                log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
            }
            else
                log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
        }
    }

    data_sp.reset();
    return false;
}

bool
GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
{
    if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
        return false;

    ExecutionContext exe_ctx (CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == NULL || thread == NULL)
        return false;

    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());

    StringExtractorGDBRemote response;
    Mutex::Locker locker;
    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
    {
        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
        ProcessSP process_sp (m_thread.GetProcess());
        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetID()))
        {
            // The data_sp contains the entire G response packet including the
            // G, and if the thread suffix is supported, it has the thread suffix
            // as well.
            const char *G_packet = (const char *)data_sp->GetBytes();
            size_t G_packet_len = data_sp->GetByteSize();
            if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
                                                       G_packet_len,
                                                       response,
                                                       false))
            {
                if (response.IsOKResponse())
                    return true;
                else if (response.IsErrorResponse())
                {
                    uint32_t num_restored = 0;
                    // We need to manually go through all of the registers and
                    // restore them manually

                    response.GetStringRef().assign (G_packet, G_packet_len);
                    response.SetFilePos(1); // Skip the leading 'G'
                    DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
                    DataExtractor restore_data (buffer.GetBytes(),
                                                buffer.GetByteSize(),
                                                m_reg_data.GetByteOrder(),
                                                m_reg_data.GetAddressByteSize());

                    const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
                                                                           restore_data.GetByteSize(),
                                                                           '\xcc');

                    if (bytes_extracted < restore_data.GetByteSize())
                        restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());

                    //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
                    const RegisterInfo *reg_info;
                    // We have to march the offset of each register along in the
                    // buffer to make sure we get the right offset.
                    uint32_t reg_byte_offset = 0;
                    for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
                    {
                        const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

                        // Skip composite registers.
                        if (reg_info->value_regs)
                            continue;

                        // Only write down the registers that need to be written
                        // if we are going to be doing registers individually.
                        bool write_reg = true;
                        const uint32_t reg_byte_size = reg_info->byte_size;

                        const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
                        if (restore_src)
                        {
                            if (m_reg_valid[reg])
                            {
                                const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
                                if (current_src)
                                    write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
                            }

                            if (write_reg)
                            {
                                StreamString packet;
                                packet.Printf ("P%x=", reg);
                                packet.PutBytesAsRawHex8 (restore_src,
                                                          reg_byte_size,
                                                          lldb::endian::InlHostByteOrder(),
                                                          lldb::endian::InlHostByteOrder());

                                if (thread_suffix_supported)
                                    packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetID());

                                m_reg_valid[reg] = false;
                                if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
                                                                          packet.GetString().size(),
                                                                          response,
                                                                          false))
                                {
                                    if (response.IsOKResponse())
                                        ++num_restored;
                                }
                            }
                        }
                    }
                    return num_restored > 0;
                }
            }
        }
    }
    else
    {
        LogSP log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
        if (log)
        {
            if (log->GetVerbose())
            {
                StreamString strm;
                gdb_comm.DumpHistory(strm);
                log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
            }
            else
                log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
        }
    }
    return false;
}


uint32_t
GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
{
    return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
}

void
GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
{
    // For Advanced SIMD and VFP register mapping.
    static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
    static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
    static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
    static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
    static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
    static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
    static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
    static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
    static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
    static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
    static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
    static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
    static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
    static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
    static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
    static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
    static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
    static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
    static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
    static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
    static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
    static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
    static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
    static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
    static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
    static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
    static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
    static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
    static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
    static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
    static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
    static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)

    // This is our array of composite registers, with each element coming from the above register mappings.
    static uint32_t *g_composites[] = {
        g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
        g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
        g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
        g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
    };

    static RegisterInfo g_register_infos[] = {
//   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
//   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
    { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
    { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
    { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
    { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
    { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
    { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
    { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
    { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
    { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
    { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
    { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
    { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
    { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
    { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
    { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
    { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
    { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
    { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
    { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
    { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
    { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
    { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
    { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
    { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
    { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
    { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
    { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
    { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
    { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
    { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
    { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
    { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
    { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
    { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
    { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
    { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
    { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
    { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
    { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
    { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
    { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
    { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
    { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
    { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
    { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
    { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
    { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
    { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
    { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
    { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
    { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
    { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
    { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
    { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
    { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
    { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
    { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
    { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
    { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
    { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
    { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
    { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
    { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
    { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
    { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
    { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
    { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
    { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
    { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
    { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
    { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
    { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
    { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
    { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
    { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
    { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
    { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
    { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
    { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
    { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
    { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
    { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
    { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
    { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
    { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
    { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
    { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
    { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
    { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
    { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
    { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
    { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
    { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
    { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
    { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
    { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
    { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
    { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
    { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
    { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
    { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
    { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
    { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
    { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
    { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
    { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
    { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
    };

    static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
    static ConstString gpr_reg_set ("General Purpose Registers");
    static ConstString sfp_reg_set ("Software Floating Point Registers");
    static ConstString vfp_reg_set ("Floating Point Registers");
    uint32_t i;
    if (from_scratch)
    {
        // Calculate the offsets of the registers
        // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
        // "primordial" registers is important.  This enables us to calculate the offset of the composite
        // register by using the offset of its first primordial register.  For example, to calculate the
        // offset of q0, use s0's offset.
        if (g_register_infos[2].byte_offset == 0)
        {
            uint32_t byte_offset = 0;
            for (i=0; i<num_registers; ++i)
            {
                // For primordial registers, increment the byte_offset by the byte_size to arrive at the
                // byte_offset for the next register.  Otherwise, we have a composite register whose
                // offset can be calculated by consulting the offset of its first primordial register.
                if (!g_register_infos[i].value_regs)
                {
                    g_register_infos[i].byte_offset = byte_offset;
                    byte_offset += g_register_infos[i].byte_size;
                }
                else
                {
                    const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
                    g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
                }
            }
        }
        for (i=0; i<num_registers; ++i)
        {
            ConstString name;
            ConstString alt_name;
            if (g_register_infos[i].name && g_register_infos[i].name[0])
                name.SetCString(g_register_infos[i].name);
            if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
                alt_name.SetCString(g_register_infos[i].alt_name);

            if (i <= 15 || i == 25)
                AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
            else if (i <= 24)
                AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
            else
                AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
        }
    }
    else
    {
        // Add composite registers to our primordial registers, then.
        const uint32_t num_composites = llvm::array_lengthof(g_composites);
        const uint32_t num_primordials = GetNumRegisters();
        RegisterInfo *g_comp_register_infos = g_register_infos + (num_registers - num_composites);
        for (i=0; i<num_composites; ++i)
        {
            ConstString name;
            ConstString alt_name;
            const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
            const char *reg_name = g_register_infos[first_primordial_reg].name;
            if (reg_name && reg_name[0])
            {
                for (uint32_t j = 0; j < num_primordials; ++j)
                {
                    const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
                    // Find a matching primordial register info entry.
                    if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
                    {
                        // The name matches the existing primordial entry.
                        // Find and assign the offset, and then add this composite register entry.
                        g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
                        name.SetCString(g_comp_register_infos[i].name);
                        AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
                    }
                }
            }
        }
    }
}

void
GDBRemoteDynamicRegisterInfo::Addx86_64ConvenienceRegisters()
{
    // For eax, ebx, ecx, edx, esi, edi, ebp, esp register mapping.
    static const char* g_mapped_names[] = {
        "rax", "rbx", "rcx", "rdx", "rdi", "rsi", "rbp", "rsp",
        "rax", "rbx", "rcx", "rdx", "rdi", "rsi", "rbp", "rsp",
        "rax", "rbx", "rcx", "rdx",
        "rax", "rbx", "rcx", "rdx", "rdi", "rsi", "rbp", "rsp"
    };

    // These value regs are to be populated with the corresponding primordial register index.
    // For example,
    static uint32_t g_eax_regs[] =  { 0, LLDB_INVALID_REGNUM }; // 0 is to be replaced with rax's index.
    static uint32_t g_ebx_regs[] =  { 0, LLDB_INVALID_REGNUM };
    static uint32_t g_ecx_regs[] =  { 0, LLDB_INVALID_REGNUM };
    static uint32_t g_edx_regs[] =  { 0, LLDB_INVALID_REGNUM };
    static uint32_t g_edi_regs[] =  { 0, LLDB_INVALID_REGNUM };
    static uint32_t g_esi_regs[] =  { 0, LLDB_INVALID_REGNUM };
    static uint32_t g_ebp_regs[] =  { 0, LLDB_INVALID_REGNUM };
    static uint32_t g_esp_regs[] =  { 0, LLDB_INVALID_REGNUM };
    
    static RegisterInfo g_conv_register_infos[] = 
    {
//    NAME      ALT      SZ OFF ENCODING         FORMAT                COMPILER              DWARF                 GENERIC                      GDB                   LLDB NATIVE            VALUE REGS    INVALIDATE REGS
//    ======    =======  == === =============    ============          ===================== ===================== ============================ ====================  ====================== ==========    ===============
    { "eax"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_eax_regs,              NULL},
    { "ebx"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ebx_regs,              NULL},
    { "ecx"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ecx_regs,              NULL},
    { "edx"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_edx_regs,              NULL},
    { "edi"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_edi_regs,              NULL},
    { "esi"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_esi_regs,              NULL},
    { "ebp"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ebp_regs,              NULL},
    { "esp"   , NULL,    4,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_esp_regs,              NULL},
    { "ax"    , NULL,    2,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_eax_regs,              NULL},
    { "bx"    , NULL,    2,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ebx_regs,              NULL},
    { "cx"    , NULL,    2,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ecx_regs,              NULL},
    { "dx"    , NULL,    2,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_edx_regs,              NULL},
    { "di"    , NULL,    2,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_edi_regs,              NULL},
    { "si"    , NULL,    2,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_esi_regs,              NULL},
    { "bp"    , NULL,    2,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ebp_regs,              NULL},
    { "sp"    , NULL,    2,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_esp_regs,              NULL},
    { "ah"    , NULL,    1,  1, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_eax_regs,              NULL},
    { "bh"    , NULL,    1,  1, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ebx_regs,              NULL},
    { "ch"    , NULL,    1,  1, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ecx_regs,              NULL},
    { "dh"    , NULL,    1,  1, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_edx_regs,              NULL},
    { "al"    , NULL,    1,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_eax_regs,              NULL},
    { "bl"    , NULL,    1,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ebx_regs,              NULL},
    { "cl"    , NULL,    1,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ecx_regs,              NULL},
    { "dl"    , NULL,    1,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_edx_regs,              NULL},
    { "dil"   , NULL,    1,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_edi_regs,              NULL},
    { "sil"   , NULL,    1,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_esi_regs,              NULL},
    { "bpl"   , NULL,    1,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_ebp_regs,              NULL},
    { "spl"   , NULL,    1,  0, eEncodingUint  , eFormatHex          , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM      , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM }, g_esp_regs,              NULL}
    };

    static const uint32_t num_conv_regs = llvm::array_lengthof(g_mapped_names);
    static ConstString gpr_reg_set ("General Purpose Registers");
    
    // Add convenience registers to our primordial registers.
    const uint32_t num_primordials = GetNumRegisters();
    uint32_t reg_kind = num_primordials;
    for (uint32_t i=0; i<num_conv_regs; ++i)
    {
        ConstString name;
        ConstString alt_name;
        const char *prim_reg_name = g_mapped_names[i];
        if (prim_reg_name && prim_reg_name[0])
        {
            for (uint32_t j = 0; j < num_primordials; ++j)
            {
                const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
                // Find a matching primordial register info entry.
                if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, prim_reg_name) == 0)
                {
                    // The name matches the existing primordial entry.
                    // Find and assign the offset, and then add this composite register entry.
                    g_conv_register_infos[i].byte_offset = reg_info->byte_offset + g_conv_register_infos[i].byte_offset;
                    // Update the value_regs and the kinds fields in order to delegate to the primordial register.
                    g_conv_register_infos[i].value_regs[0] = j;
                    g_conv_register_infos[i].kinds[eRegisterKindLLDB] = ++reg_kind;
                    name.SetCString(g_conv_register_infos[i].name);
                    AddRegister(g_conv_register_infos[i], name, alt_name, gpr_reg_set);
                }
            }
        }
    }
}