archive_write_disk (3) FreeBSD Library Functions Manual arediwrite_disk (3)

NAME
archive_wite_disk new, archive_wite_di sk_set_options,
archive_wite_disk set_skip_ file, archive_wite_di sk_set_group_l ookup,
archive_wite_disk_set_standard_| ookup,
archive_wite_disk_set_user_I| ookup, archive _wite_ header,
archive wite data, archive_wite_finish_entry, archive wite_close,

archive_write_fini sh—functions for creating objects on disk

SYNOPSIS
#i ncl ude <archi ve. h>

struct archive O

archive_wite_di sk_newvoi d);

i nt

archive_wite_disk _set_options(struct archive 0 int flags);

i nt

archive_wite_disk set_skip_file(struct archive 0 dev_t,ino_t);

i nt

archive_wite_disk_set_group_l ookup(struct archive 0Ovoid [
gidt (O(void O const char [gnane, gid_ t gid),
void ([tl eanup)(void O);

i nt

archive_wite_disk_set_standard_| ookup(struct archive D;

i nt

archive_wite_disk_set_user_I| ookup(struct archive O,void [
uid t (OD(void O const char [Cunane, uid_t uid),
void ([tl eanup)(void O);

i nt

archive_wite_header(struct archive [struct archive_entry D);

ssize t

archive_wite_data(struct archive [, const void [size_t);

i nt

archive_wite_finish_entry(struct archive D;

i nt

archive_wite_cl ose(struct archive D;

i nt

archive_wite_finish(struct archive D;

DESCRIPTION
These functions pride a complete API for creating objects on disk fretmact archie_entry descriptions.
They are most naturally used when extracting objects from an\arabing thear chi ve_r ead() inter
face. Thegeneral process is to reatiuct archie_entryobjects from an arch, then write those objects to a
struct archie object created using tteg chi ve_wri t e_di sk() family functions. This interface is deliber
ately very similar to thar chi ve_wr i t e() interface used to write objects to a streaming wechi

archive_wite_di sk_new)
Allocates and initializes struct archie object suitable for writing objects to disk.

FreeBSD 9.0 August 5, 2008 1

archive_write_disk (3) FreeBSD Library Functions Manual arediwrite_disk (3)

archive_wite_disk set_skip_file()
Records the déce and inode numbers of a file that should not \®ewaritten. Thisis typically
used to ensure that an extraction process doesventriie the archie from which objects are
being read. This capability is technically unnecessary but can be a significant performance opti-
mization in practice.

archive_wite_di sk _set_options()

The options field consists of a bitwise OR of one or more of the following values:

ARCHI VE_EXTRACT_OMER
The user and group IDs should be set on the restored file. By default, the user and group
IDs are not restored.

ARCHI VE_EXTRACT_PERM
Full permissions (including SGID, SUID, and siiabits) should be restored exactly as
specified, without obeying the current umadlote that SUID and SGID bits can only
be restored if the user and group ID of the object on disk are cortect.
ARCHI VE_EXTRACT_OWNER is not specified, then SUID and SGID bits will only be
restored if the deiult user and group IDs of newly-created objects on disk happen to
match those specified in the anghientry. By default, only basic permissions are
restored, and umask is obeyed.

ARCHI VE_EXTRACT_TI ME
The timestamps (mtime, ctime, and atime) should be restored. Bulideheg are
ignored. Notehat restoring of atime is not currently supported.

ARCHI VE_EXTRACT_NO_OVERWRI TE
Existing files on disk will not beverwritten. Bydefault, eisting regular files are trun-
cated and werwritten; existing directories will hee teir permissions updated; other
pre-existing objects are unlinked and recreated from scratch.

ARCHI VE_EXTRACT_UNLI NK
Existing files on disk will be unlinked beforeyasttempt to create them. In some cases,
this can pree o be a ggnificant performance impwement. Bydefault, existing files
are truncated and rewrittenytithe file is not recreated. In particyltre default beha
ior does not break existing hard links.

ARCHI VE_EXTRACT_ACL
Attempt to restore BLs. Bydefault, extended ACLs are ignored.

ARCHI VE_EXTRACT_FFLAGS
Attempt to restore extended file flags. By default, file flags are ignored.

ARCHI VE_EXTRACT_XATTR
Attempt to restore POSIX.1le extended attiéls. Bydefault, thg are ignored.

ARCHI VE_EXTRACT_SECURE_SYM.I NKS
Refuse to extract grobject whose final location euld be altered by a symlink on disk.
This is intended to help guard agst a variety of mischief caused by avekithat
(deliberately or otherwise)x&act files outside of the current directorfhe default is
not to perform this checkif ARCHI VE_EXTRACT _UNLI NK is specified together with
this option, the library will remee any ntermediate symlinks it finds and return an error
only if such symlink could not be rewed.

ARCHI VE_EXTRACT_SECURE_NCDOTDOT
Refuse to extract a path that contains aelement anywhere within it. The default is to
not refuse such paths. Note that paths ending ialways cause an erroregadless of
this flag.

ARCHI VE_EXTRACT_SPARSE
Scan data for blocks of NUL bytes and try to recreate them with holgs.results in
sparse files, independent of whether the aecfurmat supports or uses them.

FreeBSD 9.0 August 5, 2008 2

archive_write_disk (3) FreeBSD Library Functions Manual arediwrite_disk (3)

archive_wite_disk_set_group_l ookup(),archive_wite_disk _set_user_I| ookup()
The struct archie_entry objects contain both names and ids that can be used to identify users and
groups. Thesaames and ids describe the ownership of the file itself and also appe&ai Iist.
By default, the library uses the ids and ignores the names, but this caarbéden by rgistering
user and group lookup function3o regster, you must provide a lookup function which accepts
both a name and id and returns a suitableYiou may also provide &oid 0O pointer to a priate
data structure and a cleanup function for that data. The cleanup function wilbkedizvhen the
struct archie object is destroyed.

archive_wite_disk_set_standard_| ookup()
This comwenience function installs a standard set of user and group lookup functions. These func-
tions useget pwnam(3) andget gr nan(3) to cowert names to ids, defaulting to the ids if the
names cannot be looked up. These functions also implement a simple memory cache to reduce the
number of calls tget pwnam3) andget gr nam3).

archive_wite_header|()
Build and write a header using the data in thevidex struct archie_entry structure. See
ar chi ve_ent r y(3) for information on creating and populatistgict archie_entryobjects.

archive_wite_datal()
Write data corresponding to the header just writtBeturns number of bytes written or -1 on
error.

archive_wite_finish_entry()
Close out the entry just writterOrdinarily, clients neer need to call this, as it is called automati-
cally byar chi ve_write_next _header () andarchi ve_wite_cl ose() as needed.

archive_wite_cl ose()
Set awy attributes that could not be set during the initial restdfer example, directory time-
stamps are not restored initially because restoring a subsequenodilé alter that timestamp.
Similarly, non-writable directories are initially created with write permissions (so that their con-
tents can be restoredYhe ar chi ve_write_di sk_new library maintains a list of all such
deferred attributes and sets them when this functiowvakeéd.

archive_wite_finish()

Invokesar chi ve_wri t e_cl ose() if it was not ivoked manually then releases all resources.
More information about thetruct archive object and the verall design of the library can be found in the
I i bar chi ve(3) overview. Mary of these functions are also documented uaderhi ve_wri t e(3).

RETURN VALUES
Most functions returrARCHI VE_CK (zero) on success, or one oa@ml non-zero error codes for errors.
Specific error codes includeARCHI VE_RETRY for operations that might succeed if retried,
ARCHI VE_WARN for unusual conditions that do not peat further operations, an&RCH VE_FATAL for
serious errors that mak remaining operations impossible.The archive_errno() and
archi ve_error _string() functions can be used to retrgean gopropriate error code and &teal error
message.

archive_wite_di sk_new) returns a pointer to a newly-allocatgdict archie object.
archive_write_dat a() returns a count of the number of bytes actually written. On,efrds returned
and thear chi ve_errno() andar chi ve_error _st ri ng() functions will return appropriate values.

SEE ALSO
archi ve_read(3),archive_wite(3),tar (1), i barchive(3)

FreeBSD 9.0 August 5, 2008 3

archive_write_disk (3) FreeBSD Library Functions Manual arediwrite_disk (3)

HISTORY
The I i bar chi ve library first appeared iFreeBSD5.3. Thear chi ve_writ e_di sk interface vas
added td i bar chi ve 2. 0 and first appeared ifreeBSD6.3.

AUTHORS
Thel i bar chi ve library was written by Tim Kientzl&ientzle@acm.org

BUGS
Directories are actually extracted in dwdstinct phases. Directories are created during
archive_wite_header (), but final permissions are not set ustilchi ve_wite_cl ose(). This
separation is necessary to correctly handle borderline cases such as a non-writable directory containing files,
but can cause unexpected results. In particuliaectory permissions are not fully restored until the aeshi
is closed. If you wusechdir(2) to change the current directory between calls to
archi ve_r ead_ext ract () or before callingar chi ve_r ead_cl ose(), you may confuse the permis-
sion-setting logic with the result that directory permissions are restored incorrectly.

The library attempts to create objects with filenames longerRAak_MAX by creating prefixes of the full
path and changing the current directourrently, this logic is limited in scope; the fixup pass does not
work correctly for such objects and the symlink security check option disables the suppatyfdong
pathnames.

Restoring the patha/ . . / bb does create each intermediate directdryparticular the directoryaa is cre-
ated as well as the final objdait. In theory this can be exploited to create an entire directory heiyawith
a dngle request. Of course, this does not work if AREH VE _EXTRACT _NODOTDOT option is specified.

Implicit directories are alays created obeying the current umask. Explicit objects are created obeying the
current umask unlegsRCHI VE_EXTRACT_PERMis specified, in which case theurrent umask is ignored.

SGID and SUID bits are restored only if the correct user and group could be Ifset.
ARCHI VE_EXTRACT_OWNER is not specified, then no attempt is made to setwreeiship. Inthis case,

SGID and SUID bits are restored only if the user and group of the final object happen to match those speci-
fied in the entry.

The “standard” user-id and group-id lookup functions are not thaullefbecauseget gr nam3) and
get pwnan{3) are sometimes too large for particular applicatiorise current design allows the application
author to use a more compact implementation when appropriate.

There should be a correspondiagchi ve_r ead_di sk interface that walks a directory heiraychnd
returns archie entry objects.

FreeBSD 9.0 August 5, 2008 4

