ratz.c   [plain text]


/*
 * ratz -- read a tar gzip archive from the standard input
 *
 * coded for portability
 * _SEAR_* macros for win32 self extracting archives -- see sear(1).
 */

static char id[] = "\n@(#)$Id: ratz (Jean-loup Gailly, Mark Adler, Glenn Fowler) 1.2.3 2010-10-10 $\0\n";

#if _PACKAGE_ast

#include <ast.h>
#include <error.h>

static const char usage[] =
"[-?\n@(#)$Id: ratz (Jean-loup Gailly, Mark Adler, Glenn Fowler) 1.2.3 2010-10-10 $\n]"
"[-author?Jean-loup Gailly]"
"[-author?Mark Adler]"
"[-author?Glenn Fowler <gsf@research.att.com>]"
"[-copyright?Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler]"
"[-license?http://www.opensource.org/licenses/zlib-license]"
"[+NAME?ratz - read a tar gzip archive]"
"[+DESCRIPTION?\bratz\b extracts files and directories from a tar gzip"
"	archive on the standard input. It is a standalone program for systems"
"	that do not have \bpax\b(1), \btar\b(1) or \bgunzip\b(1). Only regular"
"	files and directories are extracted; all other file types are ignored.]"
"[+?\b.exe\b files generated by \bsear\b(1) are fully functional \bratz\b"
"	executables, so any \bratz\b option may be used on a \bsear\b file."
"	This allows \bsear\b file contents to be examined and extracted without"
"	executing any embedded installation scripts.]"
"[c:cat|uncompress?Uncompress the standard input and copy it to the standard"
"	output.]"
#if defined(_SEAR_EXEC)
"[i!:install?Execute the sear installation script.]"
#endif
"[l:local?Reject files that traverse outside the current directory.]"
"[m:meter?Display a one line text meter showing archive read progress.]"
"[n!:convert?In ebcdic environments convert text archive members from ascii"
"	to the native ebcdic.]"
"[t:list?List each file path on the standard output but do not extract.]"
"[v:verbose?List each file path on the standard output as it is extracted.]"
"[V?Print the program version and exit.]"
"[+SEE ALSO?\bgunzip\b(1), \bpackage\b(1), \bpax\b(1), \bsear\b(1), \btar\b(1)]"
;

#else

#define NiL		((char*)0)

#endif

#define METER_width	80
#define METER_parts	20

#ifndef _GUNZIP_H
#define _GUNZIP_H	1

/*
 * stripped down zlib containing public gzfopen()+gzread() in one file
 * USE THE REAL ZLIB AFTER BOOTSTRAP
 */

#define ZLIB_INTERNAL	1
#define NO_GZCOMPRESS	1

#define gz_headerp	voidp

#include <stdio.h>
#include <sys/types.h>

#if _PACKAGE_ast || defined(__STDC__) || defined(_SEAR_EXEC) || defined(_WIN32)

#define FOPEN_READ	"rb"
#define FOPEN_WRITE	"wb"

#else

#define FOPEN_READ	"r"
#define FOPEN_WRITE	"w"

#endif

#ifndef O_BINARY
#define O_BINARY	0
#endif

#if _PACKAGE_ast

#define setmode(d,m)

#else

#if !defined(_WINIX) && (_UWIN || __CYGWIN__ || __EMX__)
#define _WINIX		1
#endif

#if _WIN32 && !_WINIX

#include <direct.h>
#include <io.h>
#include <fcntl.h>
#include <windows.h>

#define access		_access
#define chmod		_chmod
#define close		_close
#define dup		_dup
#define lseek		_lseek
#define open		_open
#define read		_read
#define setmode		_setmode
#define unlink		_unlink

#define mkdir(a,b)	_mkdir(a)

#else

#define HAVE_UNISTD_H	1

#include <unistd.h>
#include <errno.h>

#define setmode(d,m)

#endif

#if defined(__STDC__)

#include <stdlib.h>
#include <string.h>

#endif

#endif

#ifndef _ZLIB_H
#define _ZLIB_H		1

/* zlib.h -- interface of the 'zlib' general purpose compression library
  version 1.2.3, July 18th, 2005

  Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  Jean-loup Gailly        Mark Adler
  jloup@gzip.org          madler@alumni.caltech.edu


  The data format used by the zlib library is described by RFCs (Request for
  Comments) 1950 to 1952 in the files http://www.ietf.org/rfc/rfc1950.txt
  (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
*/

#ifndef _ZCONF_H
#define _ZCONF_H	1

#if _PACKAGE_ast
#include <ast_std.h>	/* for { _WINIX __IMPORT__ __EXPORT__ } */
#define z_off_t		int32_t
#if _typ_int64_t
#define z_off64_t	int64_t
#endif
#else
#if !defined(_WINIX) && (_UWIN || __CYGWIN__ || __EMX__)
#define _WINIX		1
#endif
#endif

#if _BLD_z && defined(__EXPORT__)
#define ZEXTERN		__EXPORT__
#define ZEXPORT
#endif

#if defined(__MSDOS__) && !defined(MSDOS)
#  define MSDOS
#endif
#if (defined(OS_2) || defined(__OS2__)) && !defined(OS2)
#  define OS2
#endif
#if defined(_WINDOWS) && !defined(WINDOWS)
#  define WINDOWS
#endif
#if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__)
#  ifndef WIN32
#    define WIN32
#  endif
#endif
#if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32)
#  if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__)
#    ifndef SYS16BIT
#      define SYS16BIT
#    endif
#  endif
#endif

/*
 * Compile with -DMAXSEG_64K if the alloc function cannot allocate more
 * than 64k bytes at a time (needed on systems with 16-bit int).
 */
#ifdef SYS16BIT
#  define MAXSEG_64K
#endif
#ifdef MSDOS
#  define UNALIGNED_OK
#endif

#ifdef __STDC_VERSION__
#  ifndef STDC
#    define STDC
#  endif
#  if __STDC_VERSION__ >= 199901L
#    ifndef STDC99
#      define STDC99
#    endif
#  endif
#endif
#if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus))
#  define STDC
#endif
#if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__))
#  define STDC
#endif
#if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32))
#  define STDC
#endif
#if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__))
#  define STDC
#endif

#if defined(__OS400__) && !defined(STDC)    /* iSeries (formerly AS/400). */
#  define STDC
#endif

#ifndef STDC
#  ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */
#    define const       /* note: need a more gentle solution here */
#  endif
#endif

/* Some Mac compilers merge all .h files incorrectly: */
#if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__)
#  define NO_DUMMY_DECL
#endif

/* Maximum value for memLevel in deflateInit2 */
#ifndef MAX_MEM_LEVEL
#  ifdef MAXSEG_64K
#    define MAX_MEM_LEVEL 8
#  else
#    define MAX_MEM_LEVEL 9
#  endif
#endif

/* Maximum value for windowBits in deflateInit2 and inflateInit2.
 * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files
 * created by gzip. (Files created by minigzip can still be extracted by
 * gzip.)
 */
#ifndef MAX_WBITS
#  define MAX_WBITS   15 /* 32K LZ77 window */
#endif

/* The memory requirements for deflate are (in bytes):
            (1 << (windowBits+2)) +  (1 << (memLevel+9))
 that is: 128K for windowBits=15  +  128K for memLevel = 8  (default values)
 plus a few kilobytes for small objects. For example, if you want to reduce
 the default memory requirements from 256K to 128K, compile with
     make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
 Of course this will generally degrade compression (there's no free lunch).

   The memory requirements for inflate are (in bytes) 1 << windowBits
 that is, 32K for windowBits=15 (default value) plus a few kilobytes
 for small objects.
*/

                        /* Type declarations */

#ifndef OF /* function prototypes */
#  ifdef STDC
#    define OF(args)  args
#  else
#    define OF(args)  ()
#  endif
#endif

/* The following definitions for FAR are needed only for MSDOS mixed
 * model programming (small or medium model with some far allocations).
 * This was tested only with MSC; for other MSDOS compilers you may have
 * to define NO_MEMCPY in zutil.h.  If you don't need the mixed model,
 * just define FAR to be empty.
 */
#ifdef SYS16BIT
#  if defined(M_I86SM) || defined(M_I86MM)
     /* MSC small or medium model */
#    define SMALL_MEDIUM
#    ifdef _MSC_VER
#      define FAR _far
#    else
#      define FAR far
#    endif
#  endif
#  if (defined(__SMALL__) || defined(__MEDIUM__))
     /* Turbo C small or medium model */
#    define SMALL_MEDIUM
#    ifdef __BORLANDC__
#      define FAR _far
#    else
#      define FAR far
#    endif
#  endif
#endif

#if defined(WINDOWS) || defined(WIN32)
   /* If building or using zlib as a DLL, define ZLIB_DLL.
    * This is not mandatory, but it offers a little performance increase.
    */
#  ifdef ZLIB_DLL
#    if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500))
#      ifdef ZLIB_INTERNAL
#        define ZEXTERN extern __declspec(dllexport)
#      else
#        define ZEXTERN extern __declspec(dllimport)
#      endif
#    endif
#  endif  /* ZLIB_DLL */
   /* If building or using zlib with the WINAPI/WINAPIV calling convention,
    * define ZLIB_WINAPI.
    * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI.
    */
#  ifdef ZLIB_WINAPI
#    ifdef FAR
#      undef FAR
#    endif
#    include <windows.h>
     /* No need for _export, use ZLIB.DEF instead. */
     /* For complete Windows compatibility, use WINAPI, not __stdcall. */
#    define ZEXPORT WINAPI
#    ifdef WIN32
#      define ZEXPORTVA WINAPIV
#    else
#      define ZEXPORTVA FAR CDECL
#    endif
#  endif
#endif

#if defined (__BEOS__)
#  ifdef ZLIB_DLL
#    ifdef ZLIB_INTERNAL
#      define ZEXPORT   __declspec(dllexport)
#      define ZEXPORTVA __declspec(dllexport)
#    else
#      define ZEXPORT   __declspec(dllimport)
#      define ZEXPORTVA __declspec(dllimport)
#    endif
#  endif
#endif

#ifndef ZEXTERN
#  define ZEXTERN extern
#endif
#ifndef ZEXPORT
#  define ZEXPORT
#endif
#ifndef ZEXPORTVA
#  define ZEXPORTVA
#endif

#ifndef FAR
#  define FAR
#endif

#if !defined(__MACTYPES__)
typedef unsigned char  Byte;  /* 8 bits */
#endif
typedef unsigned int   uInt;  /* 16 bits or more */
typedef unsigned long  uLong; /* 32 bits or more */

#ifdef SMALL_MEDIUM
   /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */
#  define Bytef Byte FAR
#else
   typedef Byte  FAR Bytef;
#endif
typedef char  FAR charf;
typedef int   FAR intf;
typedef uInt  FAR uIntf;
typedef uLong FAR uLongf;

#ifdef STDC
   typedef void const *voidpc;
   typedef void FAR   *voidpf;
   typedef void       *voidp;
#else
   typedef Byte const *voidpc;
   typedef Byte FAR   *voidpf;
   typedef Byte       *voidp;
#endif

#if HAVE_UNISTD_H
#  include <sys/types.h> /* for off_t */
#  include <unistd.h>    /* for SEEK_* and off_t */
#  ifdef VMS
#    include <unixio.h>   /* for off_t */
#  endif
#  define z_off_t off_t
#endif
#ifndef SEEK_SET
#  define SEEK_SET        0       /* Seek from beginning of file.  */
#  define SEEK_CUR        1       /* Seek from current position.  */
#  define SEEK_END        2       /* Set file pointer to EOF plus "offset" */
#endif
#ifndef z_off_t
#  define z_off_t long
#endif

#if defined(__OS400__)
#  define NO_vsnprintf
#endif

#if defined(__MVS__)
#  define NO_vsnprintf
#endif

/* MVS linker does not support external names larger than 8 bytes */
#if defined(__MVS__)
#   pragma map(deflateInit_,"DEIN")
#   pragma map(deflateInit2_,"DEIN2")
#   pragma map(deflateEnd,"DEEND")
#   pragma map(deflateBound,"DEBND")
#   pragma map(inflateInit_,"ININ")
#   pragma map(inflateInit2_,"ININ2")
#   pragma map(inflateEnd,"INEND")
#   pragma map(inflateSync,"INSY")
#   pragma map(inflateSetDictionary,"INSEDI")
#   pragma map(compressBound,"CMBND")
#   pragma map(inflate_table,"INTABL")
#   pragma map(inflate_fast,"INFA")
#   pragma map(inflate_copyright,"INCOPY")
#endif

#endif /* _ZCONF_H */

#define ZLIB_VERSION "1.2.3"
#define ZLIB_VERNUM 0x1230

/*
     The 'zlib' compression library provides in-memory compression and
  decompression functions, including integrity checks of the uncompressed
  data.  This version of the library supports only one compression method
  (deflation) but other algorithms will be added later and will have the same
  stream interface.

     Compression can be done in a single step if the buffers are large
  enough (for example if an input file is mmap'ed), or can be done by
  repeated calls of the compression function.  In the latter case, the
  application must provide more input and/or consume the output
  (providing more output space) before each call.

     The compressed data format used by default by the in-memory functions is
  the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
  around a deflate stream, which is itself documented in RFC 1951.

     The library also supports reading and writing files in gzip (.gz) format
  with an interface similar to that of stdio using the functions that start
  with "gz".  The gzip format is different from the zlib format.  gzip is a
  gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.

     This library can optionally read and write gzip streams in memory as well.

     The zlib format was designed to be compact and fast for use in memory
  and on communications channels.  The gzip format was designed for single-
  file compression on file systems, has a larger header than zlib to maintain
  directory information, and uses a different, slower check method than zlib.

     The library does not install any signal handler. The decoder checks
  the consistency of the compressed data, so the library should never
  crash even in case of corrupted input.
*/

typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
typedef void   (*free_func)  OF((voidpf opaque, voidpf address));

struct internal_state;

typedef struct z_stream_s {
    Bytef    *next_in;  /* next input byte */
    uInt     avail_in;  /* number of bytes available at next_in */
    uLong    total_in;  /* total nb of input bytes read so far */

    Bytef    *next_out; /* next output byte should be put there */
    uInt     avail_out; /* remaining free space at next_out */
    uLong    total_out; /* total nb of bytes output so far */

    char     *msg;      /* last error message, NULL if no error */
    struct internal_state FAR *state; /* not visible by applications */

    alloc_func zalloc;  /* used to allocate the internal state */
    free_func  zfree;   /* used to free the internal state */
    voidpf     opaque;  /* private data object passed to zalloc and zfree */

    int     data_type;  /* best guess about the data type: binary or text */
    uLong   adler;      /* adler32 value of the uncompressed data */
    uLong   reserved;   /* reserved for future use */
} z_stream;

typedef z_stream FAR *z_streamp;

                        /* constants */

#define Z_NO_FLUSH      0
#define Z_PARTIAL_FLUSH 1 /* will be removed, use Z_SYNC_FLUSH instead */
#define Z_SYNC_FLUSH    2
#define Z_FULL_FLUSH    3
#define Z_FINISH        4
#define Z_BLOCK         5
/* Allowed flush values; see deflate() and inflate() below for details */

#define Z_OK            0
#define Z_STREAM_END    1
#define Z_NEED_DICT     2
#define Z_ERRNO        (-1)
#define Z_STREAM_ERROR (-2)
#define Z_DATA_ERROR   (-3)
#define Z_MEM_ERROR    (-4)
#define Z_BUF_ERROR    (-5)
#define Z_VERSION_ERROR (-6)
/* Return codes for the compression/decompression functions. Negative
 * values are errors, positive values are used for special but normal events.
 */

#define Z_NO_COMPRESSION         0
#define Z_BEST_SPEED             1
#define Z_BEST_COMPRESSION       9
#define Z_DEFAULT_COMPRESSION  (-1)
/* compression levels */

#define Z_FILTERED            1
#define Z_HUFFMAN_ONLY        2
#define Z_RLE                 3
#define Z_FIXED               4
#define Z_DEFAULT_STRATEGY    0
/* compression strategy; see deflateInit2() below for details */

#define Z_BINARY   0
#define Z_TEXT     1
#define Z_ASCII    Z_TEXT   /* for compatibility with 1.2.2 and earlier */
#define Z_UNKNOWN  2
/* Possible values of the data_type field (though see inflate()) */

#define Z_DEFLATED   8
/* The deflate compression method (the only one supported in this version) */

#define Z_NULL  0  /* for initializing zalloc, zfree, opaque */

#define inflateInit2(strm, windowBits) \
	inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream))

#endif /* _ZLIB_H */

#ifndef _ZUTIL_H
#define _ZUTIL_H	1

#if !_PACKAGE_ast && !defined(STDC)
#if defined(__STDC__)
#  include <stddef.h>
#endif
#  include <string.h>
#  include <stdlib.h>
#endif

#ifndef local
#  define local static
#endif
/* compile with -Dlocal if your debugger can't find static symbols */

typedef unsigned char  uch;
typedef uch FAR uchf;
typedef unsigned short ush;
typedef ush FAR ushf;
typedef unsigned long  ulg;

        /* common constants */

#ifndef DEF_WBITS
#  define DEF_WBITS MAX_WBITS
#endif
/* default windowBits for decompression. MAX_WBITS is for compression only */

#if MAX_MEM_LEVEL >= 8
#  define DEF_MEM_LEVEL 8
#else
#  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
#endif
/* default memLevel */

#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES    2
/* The three kinds of block type */

#define MIN_MATCH  3
#define MAX_MATCH  258
/* The minimum and maximum match lengths */

#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */

        /* target dependencies */

#if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32))
#  define OS_CODE  0x00
#  if defined(__TURBOC__) || defined(__BORLANDC__)
#    if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
       /* Allow compilation with ANSI keywords only enabled */
       void _Cdecl farfree( void *block );
       void *_Cdecl farmalloc( unsigned long nbytes );
#    else
#      include <alloc.h>
#    endif
#  else /* MSC or DJGPP */
#    include <malloc.h>
#  endif
#endif

#ifdef AMIGA
#  define OS_CODE  0x01
#endif

#if defined(VAXC) || defined(VMS)
#  define OS_CODE  0x02
#  define F_OPEN(name, mode) \
     fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
#endif

#if defined(ATARI) || defined(atarist)
#  define OS_CODE  0x05
#endif

#ifdef OS2
#  define OS_CODE  0x06
#  ifdef M_I86
     #include <malloc.h>
#  endif
#endif

#if defined(MACOS) || defined(TARGET_OS_MAC)
#  define OS_CODE  0x07
#  if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
#    include <unix.h> /* for fdopen */
#  else
#    ifndef fdopen
#      define fdopen(fd,mode) NULL /* No fdopen() */
#    endif
#  endif
#endif

#ifdef TOPS20
#  define OS_CODE  0x0a
#endif

#ifdef WIN32
#  ifndef __CYGWIN__  /* Cygwin is Unix, not Win32 */
#    define OS_CODE  0x0b
#  endif
#endif

#ifdef __50SERIES /* Prime/PRIMOS */
#  define OS_CODE  0x0f
#endif

#if defined(_BEOS_) || defined(RISCOS)
#  define fdopen(fd,mode) NULL /* No fdopen() */
#endif

#if (defined(_MSC_VER) && (_MSC_VER > 600))
#  if defined(_WIN32_WCE)
#    define fdopen(fd,mode) NULL /* No fdopen() */
#    ifndef _PTRDIFF_T_DEFINED
       typedef int ptrdiff_t;
#      define _PTRDIFF_T_DEFINED
#    endif
#  else
#    define fdopen(fd,type)  _fdopen(fd,type)
#  endif
#endif

        /* common defaults */

#ifndef OS_CODE
#  define OS_CODE  0x03  /* assume Unix */
#endif

#ifndef F_OPEN
#  define F_OPEN(name, mode) fopen((name), (mode))
#endif

         /* functions */

#if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550)
#  ifndef HAVE_VSNPRINTF
#    define HAVE_VSNPRINTF
#  endif
#endif
#if defined(__CYGWIN__)
#  ifndef HAVE_VSNPRINTF
#    define HAVE_VSNPRINTF
#  endif
#endif
#ifndef HAVE_VSNPRINTF
#  ifdef MSDOS
     /* vsnprintf may exist on some MS-DOS compilers (DJGPP?),
        but for now we just assume it doesn't. */
#    define NO_vsnprintf
#  endif
#  ifdef __TURBOC__
#    define NO_vsnprintf
#  endif
#  ifdef WIN32
     /* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */
#    if !defined(vsnprintf) && !defined(NO_vsnprintf)
#      define vsnprintf _vsnprintf
#    endif
#  endif
#  ifdef __SASC
#    define NO_vsnprintf
#  endif
#endif
#ifdef VMS
#  define NO_vsnprintf
#endif

#if defined(pyr)
#  define NO_MEMCPY
#endif
#if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
 /* Use our own functions for small and medium model with MSC <= 5.0.
  * You may have to use the same strategy for Borland C (untested).
  * The __SC__ check is for Symantec.
  */
#  define NO_MEMCPY
#endif
#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
#  define HAVE_MEMCPY
#endif
#ifdef HAVE_MEMCPY
#  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
#    define zmemcpy _fmemcpy
#    define zmemcmp _fmemcmp
#    define zmemzero(dest, len) _fmemset(dest, 0, len)
#  else
#    define zmemcpy memcpy
#    define zmemcmp memcmp
#    define zmemzero(dest, len) memset(dest, 0, len)
#  endif
#else
   extern void zmemcpy  OF((Bytef* dest, const Bytef* source, uInt len));
   extern int  zmemcmp  OF((const Bytef* s1, const Bytef* s2, uInt len));
   extern void zmemzero OF((Bytef* dest, uInt len));
#endif

/* Diagnostic functions */
#ifdef Z_DEBUG
#  include <stdio.h>
   extern int z_verbose;
   extern void z_error    OF((char *m));
#  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
#  define Trace(x) {if (z_verbose>=0) fprintf x ;}
#  define Tracev(x) {if (z_verbose>0) fprintf x ;}
#  define Tracevv(x) {if (z_verbose>1) fprintf x ;}
#  define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
#  define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
#else
#  define Assert(cond,msg)
#  define Trace(x)
#  define Tracev(x)
#  define Tracevv(x)
#  define Tracec(c,x)
#  define Tracecv(c,x)
#endif


voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
void   zcfree  OF((voidpf opaque, voidpf ptr));

#define ZALLOC(strm, items, size) \
           (*((strm)->zalloc))((strm)->opaque, (items), (size))
#define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
#endif /* _ZUTIL_H */

#ifndef _ZUTIL_C
#define _ZUTIL_C

#if 0 && !_PACKAGE_ast && !defined(STDC)
extern void exit OF((int));
#endif

#ifndef HAVE_MEMCPY

void zmemcpy(dest, source, len)
    Bytef* dest;
    const Bytef* source;
    uInt  len;
{
    if (len == 0) return;
    do {
        *dest++ = *source++; /* ??? to be unrolled */
    } while (--len != 0);
}

int zmemcmp(s1, s2, len)
    const Bytef* s1;
    const Bytef* s2;
    uInt  len;
{
    uInt j;

    for (j = 0; j < len; j++) {
        if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
    }
    return 0;
}

void zmemzero(dest, len)
    Bytef* dest;
    uInt  len;
{
    if (len == 0) return;
    do {
        *dest++ = 0;  /* ??? to be unrolled */
    } while (--len != 0);
}
#endif


#ifdef SYS16BIT

#ifdef __TURBOC__
/* Turbo C in 16-bit mode */

#  define MY_ZCALLOC

/* Turbo C malloc() does not allow dynamic allocation of 64K bytes
 * and farmalloc(64K) returns a pointer with an offset of 8, so we
 * must fix the pointer. Warning: the pointer must be put back to its
 * original form in order to free it, use zcfree().
 */

#define MAX_PTR 10
/* 10*64K = 640K */

local int next_ptr = 0;

typedef struct ptr_table_s {
    voidpf org_ptr;
    voidpf new_ptr;
} ptr_table;

local ptr_table table[MAX_PTR];
/* This table is used to remember the original form of pointers
 * to large buffers (64K). Such pointers are normalized with a zero offset.
 * Since MSDOS is not a preemptive multitasking OS, this table is not
 * protected from concurrent access. This hack doesn't work anyway on
 * a protected system like OS/2. Use Microsoft C instead.
 */

voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
{
    voidpf buf = opaque; /* just to make some compilers happy */
    ulg bsize = (ulg)items*size;

    /* If we allocate less than 65520 bytes, we assume that farmalloc
     * will return a usable pointer which doesn't have to be normalized.
     */
    if (bsize < 65520L) {
        buf = farmalloc(bsize);
        if (*(ush*)&buf != 0) return buf;
    } else {
        buf = farmalloc(bsize + 16L);
    }
    if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
    table[next_ptr].org_ptr = buf;

    /* Normalize the pointer to seg:0 */
    *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
    *(ush*)&buf = 0;
    table[next_ptr++].new_ptr = buf;
    return buf;
}

void  zcfree (voidpf opaque, voidpf ptr)
{
    int n;
    if (*(ush*)&ptr != 0) { /* object < 64K */
        farfree(ptr);
        return;
    }
    /* Find the original pointer */
    for (n = 0; n < next_ptr; n++) {
        if (ptr != table[n].new_ptr) continue;

        farfree(table[n].org_ptr);
        while (++n < next_ptr) {
            table[n-1] = table[n];
        }
        next_ptr--;
        return;
    }
    ptr = opaque; /* just to make some compilers happy */
    Assert(0, "zcfree: ptr not found");
}

#endif /* __TURBOC__ */


#ifdef M_I86
/* Microsoft C in 16-bit mode */

#  define MY_ZCALLOC

#if (!defined(_MSC_VER) || (_MSC_VER <= 600))
#  define _halloc  halloc
#  define _hfree   hfree
#endif

voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
{
    if (opaque) opaque = 0; /* to make compiler happy */
    return _halloc((long)items, size);
}

void  zcfree (voidpf opaque, voidpf ptr)
{
    if (opaque) opaque = 0; /* to make compiler happy */
    _hfree(ptr);
}

#endif /* M_I86 */

#endif /* SYS16BIT */


#ifndef MY_ZCALLOC /* Any system without a special alloc function */

#if 0 && !_PACKAGE_ast
#ifndef STDC
extern voidp  malloc OF((uInt size));
extern voidp  calloc OF((uInt items, uInt size));
extern void   free   OF((voidpf ptr));
#endif
#endif

voidpf zcalloc (opaque, items, size)
    voidpf opaque;
    unsigned items;
    unsigned size;
{
    if (opaque) items += size - size; /* make compiler happy */
    return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) :
                              (voidpf)calloc(items, size);
}

void  zcfree (opaque, ptr)
    voidpf opaque;
    voidpf ptr;
{
    free(ptr);
    if (opaque) return; /* make compiler happy */
}

#endif /* MY_ZCALLOC */

#endif /* _ZUTIL_C */

#ifndef _CRC32_H
#define _CRC32_H	1

/* crc32.h -- tables for rapid CRC calculation
 * Generated automatically by crc32.c
 */

#ifndef TBLS
#define TBLS	1
#endif

local const unsigned long FAR crc_table[TBLS][256] =
{
  {
    0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
    0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
    0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
    0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
    0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
    0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
    0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
    0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
    0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
    0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
    0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
    0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
    0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
    0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
    0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
    0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
    0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
    0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
    0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
    0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
    0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
    0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
    0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
    0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
    0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
    0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
    0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
    0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
    0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
    0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
    0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
    0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
    0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
    0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
    0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
    0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
    0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
    0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
    0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
    0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
    0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
    0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
    0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
    0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
    0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
    0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
    0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
    0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
    0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
    0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
    0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
    0x2d02ef8d
  },
};

#endif /* _CRC32_H */

#ifndef _CRC32_C
#define _CRC32_C	1

/* ========================================================================= */
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1

/* ========================================================================= */
unsigned long ZEXPORT crc32(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    unsigned len;
{
    if (buf == Z_NULL) return 0;

#ifdef DYNAMIC_CRC_TABLE
    if (crc_table_empty)
        make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */

#ifdef BYFOUR
    if (sizeof(void *) == sizeof(ptrdiff_t)) {
        u4 endian;

        endian = 1;
        if (*((unsigned char *)(&endian)))
            return crc32_little(crc, buf, len);
        else
            return crc32_big(crc, buf, len);
    }
#endif /* BYFOUR */
    crc = crc ^ 0xffffffff;
    while (len >= 8) {
        DO8;
        len -= 8;
    }
    if (len) do {
        DO1;
    } while (--len);
    return crc ^ 0xffffffff;
}

#undef	DO1
#undef	DO8

#endif /* _CRC32_C */

#ifndef _ADLER32_C
#define _ADLER32_C	1

#define BASE 65521    /* largest prime smaller than 65536 */
#define NMAX 5552
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */

#define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
#define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
#define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
#define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
#define DO16(buf)   DO8(buf,0); DO8(buf,8);

/* use NO_DIVIDE if your processor does not do division in hardware */
#ifdef NO_DIVIDE
#  define MOD(a) \
    do { \
        if (a >= (BASE << 16)) a -= (BASE << 16); \
        if (a >= (BASE << 15)) a -= (BASE << 15); \
        if (a >= (BASE << 14)) a -= (BASE << 14); \
        if (a >= (BASE << 13)) a -= (BASE << 13); \
        if (a >= (BASE << 12)) a -= (BASE << 12); \
        if (a >= (BASE << 11)) a -= (BASE << 11); \
        if (a >= (BASE << 10)) a -= (BASE << 10); \
        if (a >= (BASE << 9)) a -= (BASE << 9); \
        if (a >= (BASE << 8)) a -= (BASE << 8); \
        if (a >= (BASE << 7)) a -= (BASE << 7); \
        if (a >= (BASE << 6)) a -= (BASE << 6); \
        if (a >= (BASE << 5)) a -= (BASE << 5); \
        if (a >= (BASE << 4)) a -= (BASE << 4); \
        if (a >= (BASE << 3)) a -= (BASE << 3); \
        if (a >= (BASE << 2)) a -= (BASE << 2); \
        if (a >= (BASE << 1)) a -= (BASE << 1); \
        if (a >= BASE) a -= BASE; \
    } while (0)
#  define MOD4(a) \
    do { \
        if (a >= (BASE << 4)) a -= (BASE << 4); \
        if (a >= (BASE << 3)) a -= (BASE << 3); \
        if (a >= (BASE << 2)) a -= (BASE << 2); \
        if (a >= (BASE << 1)) a -= (BASE << 1); \
        if (a >= BASE) a -= BASE; \
    } while (0)
#else
#  define MOD(a) a %= BASE
#  define MOD4(a) a %= BASE
#endif

/* ========================================================================= */
uLong ZEXPORT adler32(adler, buf, len)
    uLong adler;
    const Bytef *buf;
    uInt len;
{
    unsigned long sum2;
    unsigned n;

    /* split Adler-32 into component sums */
    sum2 = (adler >> 16) & 0xffff;
    adler &= 0xffff;

    /* in case user likes doing a byte at a time, keep it fast */
    if (len == 1) {
        adler += buf[0];
        if (adler >= BASE)
            adler -= BASE;
        sum2 += adler;
        if (sum2 >= BASE)
            sum2 -= BASE;
        return adler | (sum2 << 16);
    }

    /* initial Adler-32 value (deferred check for len == 1 speed) */
    if (buf == Z_NULL)
        return 1L;

    /* in case short lengths are provided, keep it somewhat fast */
    if (len < 16) {
        while (len--) {
            adler += *buf++;
            sum2 += adler;
        }
        if (adler >= BASE)
            adler -= BASE;
        MOD4(sum2);             /* only added so many BASE's */
        return adler | (sum2 << 16);
    }

    /* do length NMAX blocks -- requires just one modulo operation */
    while (len >= NMAX) {
        len -= NMAX;
        n = NMAX / 16;          /* NMAX is divisible by 16 */
        do {
            DO16(buf);          /* 16 sums unrolled */
            buf += 16;
        } while (--n);
        MOD(adler);
        MOD(sum2);
    }

    /* do remaining bytes (less than NMAX, still just one modulo) */
    if (len) {                  /* avoid modulos if none remaining */
        while (len >= 16) {
            len -= 16;
            DO16(buf);
            buf += 16;
        }
        while (len--) {
            adler += *buf++;
            sum2 += adler;
        }
        MOD(adler);
        MOD(sum2);
    }

    /* return recombined sums */
    return adler | (sum2 << 16);
}

#endif /* _ADLER32_C */

#ifndef _DEFLATE_H
#define _DEFLATE_H	1

/* ===========================================================================
 * Internal compression state.
 */

#define LENGTH_CODES 29
/* number of length codes, not counting the special END_BLOCK code */

#define LITERALS  256
/* number of literal bytes 0..255 */

#define L_CODES (LITERALS+1+LENGTH_CODES)
/* number of Literal or Length codes, including the END_BLOCK code */

#define D_CODES   30
/* number of distance codes */

#define BL_CODES  19
/* number of codes used to transfer the bit lengths */

#define HEAP_SIZE (2*L_CODES+1)
/* maximum heap size */

#define MAX_BITS 15
/* All codes must not exceed MAX_BITS bits */

#define INIT_STATE    42
#define EXTRA_STATE   69
#define NAME_STATE    73
#define COMMENT_STATE 91
#define HCRC_STATE   103
#define BUSY_STATE   113
#define FINISH_STATE 666
/* Stream status */


/* Data structure describing a single value and its code string. */
typedef struct ct_data_s {
    union {
        ush  freq;       /* frequency count */
        ush  code;       /* bit string */
    } fc;
    union {
        ush  dad;        /* father node in Huffman tree */
        ush  len;        /* length of bit string */
    } dl;
} FAR ct_data;

#define Freq fc.freq
#define Code fc.code
#define Dad  dl.dad
#define Len  dl.len

typedef struct static_tree_desc_s  static_tree_desc;

typedef struct tree_desc_s {
    ct_data *dyn_tree;           /* the dynamic tree */
    int     max_code;            /* largest code with non zero frequency */
    static_tree_desc *stat_desc; /* the corresponding static tree */
} FAR tree_desc;

typedef ush Pos;
typedef Pos FAR Posf;
typedef unsigned IPos;

/* A Pos is an index in the character window. We use short instead of int to
 * save space in the various tables. IPos is used only for parameter passing.
 */

typedef struct internal_state {
    z_streamp strm;      /* pointer back to this zlib stream */
    int   status;        /* as the name implies */
    Bytef *pending_buf;  /* output still pending */
    ulg   pending_buf_size; /* size of pending_buf */
    Bytef *pending_out;  /* next pending byte to output to the stream */
    uInt   pending;      /* nb of bytes in the pending buffer */
    int   wrap;          /* bit 0 true for zlib, bit 1 true for gzip */
    gz_headerp  gzhead;  /* gzip header information to write */
    uInt   gzindex;      /* where in extra, name, or comment */
    Byte  method;        /* STORED (for zip only) or DEFLATED */
    int   last_flush;    /* value of flush param for previous deflate call */

                /* used by deflate.c: */

    uInt  w_size;        /* LZ77 window size (32K by default) */
    uInt  w_bits;        /* log2(w_size)  (8..16) */
    uInt  w_mask;        /* w_size - 1 */

    Bytef *window;
    /* Sliding window. Input bytes are read into the second half of the window,
     * and move to the first half later to keep a dictionary of at least wSize
     * bytes. With this organization, matches are limited to a distance of
     * wSize-MAX_MATCH bytes, but this ensures that IO is always
     * performed with a length multiple of the block size. Also, it limits
     * the window size to 64K, which is quite useful on MSDOS.
     * To do: use the user input buffer as sliding window.
     */

    ulg window_size;
    /* Actual size of window: 2*wSize, except when the user input buffer
     * is directly used as sliding window.
     */

    Posf *prev;
    /* Link to older string with same hash index. To limit the size of this
     * array to 64K, this link is maintained only for the last 32K strings.
     * An index in this array is thus a window index modulo 32K.
     */

    Posf *head; /* Heads of the hash chains or NIL. */

    uInt  ins_h;          /* hash index of string to be inserted */
    uInt  hash_size;      /* number of elements in hash table */
    uInt  hash_bits;      /* log2(hash_size) */
    uInt  hash_mask;      /* hash_size-1 */

    uInt  hash_shift;
    /* Number of bits by which ins_h must be shifted at each input
     * step. It must be such that after MIN_MATCH steps, the oldest
     * byte no longer takes part in the hash key, that is:
     *   hash_shift * MIN_MATCH >= hash_bits
     */

    long block_start;
    /* Window position at the beginning of the current output block. Gets
     * negative when the window is moved backwards.
     */

    uInt match_length;           /* length of best match */
    IPos prev_match;             /* previous match */
    int match_available;         /* set if previous match exists */
    uInt strstart;               /* start of string to insert */
    uInt match_start;            /* start of matching string */
    uInt lookahead;              /* number of valid bytes ahead in window */

    uInt prev_length;
    /* Length of the best match at previous step. Matches not greater than this
     * are discarded. This is used in the lazy match evaluation.
     */

    uInt max_chain_length;
    /* To speed up deflation, hash chains are never searched beyond this
     * length.  A higher limit improves compression ratio but degrades the
     * speed.
     */

    uInt max_lazy_match;
    /* Attempt to find a better match only when the current match is strictly
     * smaller than this value. This mechanism is used only for compression
     * levels >= 4.
     */
#   define max_insert_length  max_lazy_match
    /* Insert new strings in the hash table only if the match length is not
     * greater than this length. This saves time but degrades compression.
     * max_insert_length is used only for compression levels <= 3.
     */

    int level;    /* compression level (1..9) */
    int strategy; /* favor or force Huffman coding*/

    uInt good_match;
    /* Use a faster search when the previous match is longer than this */

    int nice_match; /* Stop searching when current match exceeds this */

                /* used by trees.c: */
    /* Didn't use ct_data typedef below to supress compiler warning */
    struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
    struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
    struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */

    struct tree_desc_s l_desc;               /* desc. for literal tree */
    struct tree_desc_s d_desc;               /* desc. for distance tree */
    struct tree_desc_s bl_desc;              /* desc. for bit length tree */

    ush bl_count[MAX_BITS+1];
    /* number of codes at each bit length for an optimal tree */

    int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
    int heap_len;               /* number of elements in the heap */
    int heap_max;               /* element of largest frequency */
    /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
     * The same heap array is used to build all trees.
     */

    uch depth[2*L_CODES+1];
    /* Depth of each subtree used as tie breaker for trees of equal frequency
     */

    uchf *l_buf;          /* buffer for literals or lengths */

    uInt  lit_bufsize;
    /* Size of match buffer for literals/lengths.  There are 4 reasons for
     * limiting lit_bufsize to 64K:
     *   - frequencies can be kept in 16 bit counters
     *   - if compression is not successful for the first block, all input
     *     data is still in the window so we can still emit a stored block even
     *     when input comes from standard input.  (This can also be done for
     *     all blocks if lit_bufsize is not greater than 32K.)
     *   - if compression is not successful for a file smaller than 64K, we can
     *     even emit a stored file instead of a stored block (saving 5 bytes).
     *     This is applicable only for zip (not gzip or zlib).
     *   - creating new Huffman trees less frequently may not provide fast
     *     adaptation to changes in the input data statistics. (Take for
     *     example a binary file with poorly compressible code followed by
     *     a highly compressible string table.) Smaller buffer sizes give
     *     fast adaptation but have of course the overhead of transmitting
     *     trees more frequently.
     *   - I can't count above 4
     */

    uInt last_lit;      /* running index in l_buf */

    ushf *d_buf;
    /* Buffer for distances. To simplify the code, d_buf and l_buf have
     * the same number of elements. To use different lengths, an extra flag
     * array would be necessary.
     */

    ulg opt_len;        /* bit length of current block with optimal trees */
    ulg static_len;     /* bit length of current block with static trees */
    uInt matches;       /* number of string matches in current block */
    int last_eob_len;   /* bit length of EOB code for last block */

#ifdef Z_DEBUG
    ulg compressed_len; /* total bit length of compressed file mod 2^32 */
    ulg bits_sent;      /* bit length of compressed data sent mod 2^32 */
#endif

    ush bi_buf;
    /* Output buffer. bits are inserted starting at the bottom (least
     * significant bits).
     */
    int bi_valid;
    /* Number of valid bits in bi_buf.  All bits above the last valid bit
     * are always zero.
     */

} FAR deflate_state;

/* Output a byte on the stream.
 * IN assertion: there is enough room in pending_buf.
 */
#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}


#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
/* Minimum amount of lookahead, except at the end of the input file.
 * See deflate.c for comments about the MIN_MATCH+1.
 */

#define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
/* In order to simplify the code, particularly on 16 bit machines, match
 * distances are limited to MAX_DIST instead of WSIZE.
 */

        /* in trees.c */
void _tr_init         OF((deflate_state *s));
int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
void _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
                          int eof));
void _tr_align        OF((deflate_state *s));
void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
                          int eof));

#define d_code(dist) \
   ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
/* Mapping from a distance to a distance code. dist is the distance - 1 and
 * must not have side effects. _dist_code[256] and _dist_code[257] are never
 * used.
 */

#ifndef Z_DEBUG
/* Inline versions of _tr_tally for speed: */

#if defined(GEN_TREES_H) || !defined(STDC)
  extern uch _length_code[];
  extern uch _dist_code[];
#else
  extern const uch _length_code[];
  extern const uch _dist_code[];
#endif

# define _tr_tally_lit(s, c, flush) \
  { uch cc = (c); \
    s->d_buf[s->last_lit] = 0; \
    s->l_buf[s->last_lit++] = cc; \
    s->dyn_ltree[cc].Freq++; \
    flush = (s->last_lit == s->lit_bufsize-1); \
   }
# define _tr_tally_dist(s, distance, length, flush) \
  { uch len = (length); \
    ush dist = (distance); \
    s->d_buf[s->last_lit] = dist; \
    s->l_buf[s->last_lit++] = len; \
    dist--; \
    s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
    s->dyn_dtree[d_code(dist)].Freq++; \
    flush = (s->last_lit == s->lit_bufsize-1); \
  }
#else
# define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
# define _tr_tally_dist(s, distance, length, flush) \
              flush = _tr_tally(s, distance, length)
#endif

#endif /* _DEFLATE_H */

#ifndef _INFTREES_H
#define _INFTREES_H	1

typedef struct {
    unsigned char op;           /* operation, extra bits, table bits */
    unsigned char bits;         /* bits in this part of the code */
    unsigned short val;         /* offset in table or code value */
} code;

/* op values as set by inflate_table():
    00000000 - literal
    0000tttt - table link, tttt != 0 is the number of table index bits
    0001eeee - length or distance, eeee is the number of extra bits
    01100000 - end of block
    01000000 - invalid code
 */

/* Maximum size of dynamic tree.  The maximum found in a long but non-
   exhaustive search was 1444 code structures (852 for length/literals
   and 592 for distances, the latter actually the result of an
   exhaustive search).  The true maximum is not known, but the value
   below is more than safe. */
#define ENOUGH 2048
#define MAXD 592

/* Type of code to build for inftable() */
typedef enum {
    CODES,
    LENS,
    DISTS
} codetype;

#endif /* _INFTREES_H */

#ifndef _INFLATE_H
#define _INFLATE_H	1

/* Possible inflate modes between inflate() calls */
typedef enum {
    HEAD,       /* i: waiting for magic header */
    FLAGS,      /* i: waiting for method and flags (gzip) */
    TIME,       /* i: waiting for modification time (gzip) */
    OS,         /* i: waiting for extra flags and operating system (gzip) */
    EXLEN,      /* i: waiting for extra length (gzip) */
    EXTRA,      /* i: waiting for extra bytes (gzip) */
    NAME,       /* i: waiting for end of file name (gzip) */
    COMMENT,    /* i: waiting for end of comment (gzip) */
    HCRC,       /* i: waiting for header crc (gzip) */
    DICTID,     /* i: waiting for dictionary check value */
    DICT,       /* waiting for inflateSetDictionary() call */
        TYPE,       /* i: waiting for type bits, including last-flag bit */
        TYPEDO,     /* i: same, but skip check to exit inflate on new block */
        STORED,     /* i: waiting for stored size (length and complement) */
        COPY,       /* i/o: waiting for input or output to copy stored block */
        TABLE,      /* i: waiting for dynamic block table lengths */
        LENLENS,    /* i: waiting for code length code lengths */
        CODELENS,   /* i: waiting for length/lit and distance code lengths */
            LEN,        /* i: waiting for length/lit code */
            LENEXT,     /* i: waiting for length extra bits */
            DIST,       /* i: waiting for distance code */
            DISTEXT,    /* i: waiting for distance extra bits */
            MATCH,      /* o: waiting for output space to copy string */
            LIT,        /* o: waiting for output space to write literal */
    CHECK,      /* i: waiting for 32-bit check value */
    LENGTH,     /* i: waiting for 32-bit length (gzip) */
    DONE,       /* finished check, done -- remain here until reset */
    BAD,        /* got a data error -- remain here until reset */
    MEM,        /* got an inflate() memory error -- remain here until reset */
    SYNC        /* looking for synchronization bytes to restart inflate() */
} inflate_mode;

/*
    State transitions between above modes -

    (most modes can go to the BAD or MEM mode -- not shown for clarity)

    Process header:
        HEAD -> (gzip) or (zlib)
        (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME
        NAME -> COMMENT -> HCRC -> TYPE
        (zlib) -> DICTID or TYPE
        DICTID -> DICT -> TYPE
    Read deflate blocks:
            TYPE -> STORED or TABLE or LEN or CHECK
            STORED -> COPY -> TYPE
            TABLE -> LENLENS -> CODELENS -> LEN
    Read deflate codes:
                LEN -> LENEXT or LIT or TYPE
                LENEXT -> DIST -> DISTEXT -> MATCH -> LEN
                LIT -> LEN
    Process trailer:
        CHECK -> LENGTH -> DONE
 */

/* state maintained between inflate() calls.  Approximately 7K bytes. */
struct inflate_state {
    inflate_mode mode;          /* current inflate mode */
    int last;                   /* true if processing last block */
    int wrap;                   /* bit 0 true for zlib, bit 1 true for gzip */
    int havedict;               /* true if dictionary provided */
    int flags;                  /* gzip header method and flags (0 if zlib) */
    unsigned dmax;              /* zlib header max distance (INFLATE_STRICT) */
    unsigned long check;        /* protected copy of check value */
    unsigned long total;        /* protected copy of output count */
    gz_headerp head;            /* where to save gzip header information */
        /* sliding window */
    unsigned wbits;             /* log base 2 of requested window size */
    unsigned wsize;             /* window size or zero if not using window */
    unsigned whave;             /* valid bytes in the window */
    unsigned write;             /* window write index */
    unsigned char FAR *window;  /* allocated sliding window, if needed */
        /* bit accumulator */
    unsigned long hold;         /* input bit accumulator */
    unsigned bits;              /* number of bits in "in" */
        /* for string and stored block copying */
    unsigned length;            /* literal or length of data to copy */
    unsigned offset;            /* distance back to copy string from */
        /* for table and code decoding */
    unsigned extra;             /* extra bits needed */
        /* fixed and dynamic code tables */
    code const FAR *lencode;    /* starting table for length/literal codes */
    code const FAR *distcode;   /* starting table for distance codes */
    unsigned lenbits;           /* index bits for lencode */
    unsigned distbits;          /* index bits for distcode */
        /* dynamic table building */
    unsigned ncode;             /* number of code length code lengths */
    unsigned nlen;              /* number of length code lengths */
    unsigned ndist;             /* number of distance code lengths */
    unsigned have;              /* number of code lengths in lens[] */
    code FAR *next;             /* next available space in codes[] */
    unsigned short lens[320];   /* temporary storage for code lengths */
    unsigned short work[288];   /* work area for code table building */
    code codes[ENOUGH];         /* space for code tables */
};
#endif /* _INFLATE_H */

#ifndef _INFTREES_C
#define _INFTREES_C	1

#define MAXBITS 15

const char inflate_copyright[] =
   " inflate 1.2.3 Copyright 1995-2005 Mark Adler ";
/*
  If you use the zlib library in a product, an acknowledgment is welcome
  in the documentation of your product. If for some reason you cannot
  include such an acknowledgment, I would appreciate that you keep this
  copyright string in the executable of your product.
 */

/*
   Build a set of tables to decode the provided canonical Huffman code.
   The code lengths are lens[0..codes-1].  The result starts at *table,
   whose indices are 0..2^bits-1.  work is a writable array of at least
   lens shorts, which is used as a work area.  type is the type of code
   to be generated, CODES, LENS, or DISTS.  On return, zero is success,
   -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
   on return points to the next available entry's address.  bits is the
   requested root table index bits, and on return it is the actual root
   table index bits.  It will differ if the request is greater than the
   longest code or if it is less than the shortest code.
 */
int inflate_table(type, lens, codes, table, bits, work)
codetype type;
unsigned short FAR *lens;
unsigned codes;
code FAR * FAR *table;
unsigned FAR *bits;
unsigned short FAR *work;
{
    unsigned len;               /* a code's length in bits */
    unsigned sym;               /* index of code symbols */
    unsigned min, max;          /* minimum and maximum code lengths */
    unsigned root;              /* number of index bits for root table */
    unsigned curr;              /* number of index bits for current table */
    unsigned drop;              /* code bits to drop for sub-table */
    int left;                   /* number of prefix codes available */
    unsigned used;              /* code entries in table used */
    unsigned huff;              /* Huffman code */
    unsigned incr;              /* for incrementing code, index */
    unsigned fill;              /* index for replicating entries */
    unsigned low;               /* low bits for current root entry */
    unsigned mask;              /* mask for low root bits */
    code this;                  /* table entry for duplication */
    code FAR *next;             /* next available space in table */
    const unsigned short FAR *base;     /* base value table to use */
    const unsigned short FAR *extra;    /* extra bits table to use */
    int end;                    /* use base and extra for symbol > end */
    unsigned short count[MAXBITS+1];    /* number of codes of each length */
    unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
    static const unsigned short lbase[31] = { /* Length codes 257..285 base */
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
    static const unsigned short lext[31] = { /* Length codes 257..285 extra */
        16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
        19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196};
    static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
        8193, 12289, 16385, 24577, 0, 0};
    static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
        16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
        23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
        28, 28, 29, 29, 64, 64};

    /*
       Process a set of code lengths to create a canonical Huffman code.  The
       code lengths are lens[0..codes-1].  Each length corresponds to the
       symbols 0..codes-1.  The Huffman code is generated by first sorting the
       symbols by length from short to long, and retaining the symbol order
       for codes with equal lengths.  Then the code starts with all zero bits
       for the first code of the shortest length, and the codes are integer
       increments for the same length, and zeros are appended as the length
       increases.  For the deflate format, these bits are stored backwards
       from their more natural integer increment ordering, and so when the
       decoding tables are built in the large loop below, the integer codes
       are incremented backwards.

       This routine assumes, but does not check, that all of the entries in
       lens[] are in the range 0..MAXBITS.  The caller must assure this.
       1..MAXBITS is interpreted as that code length.  zero means that that
       symbol does not occur in this code.

       The codes are sorted by computing a count of codes for each length,
       creating from that a table of starting indices for each length in the
       sorted table, and then entering the symbols in order in the sorted
       table.  The sorted table is work[], with that space being provided by
       the caller.

       The length counts are used for other purposes as well, i.e. finding
       the minimum and maximum length codes, determining if there are any
       codes at all, checking for a valid set of lengths, and looking ahead
       at length counts to determine sub-table sizes when building the
       decoding tables.
     */

    /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
    for (len = 0; len <= MAXBITS; len++)
        count[len] = 0;
    for (sym = 0; sym < codes; sym++)
        count[lens[sym]]++;

    /* bound code lengths, force root to be within code lengths */
    root = *bits;
    for (max = MAXBITS; max >= 1; max--)
        if (count[max] != 0) break;
    if (root > max) root = max;
    if (max == 0) {                     /* no symbols to code at all */
        this.op = (unsigned char)64;    /* invalid code marker */
        this.bits = (unsigned char)1;
        this.val = (unsigned short)0;
        *(*table)++ = this;             /* make a table to force an error */
        *(*table)++ = this;
        *bits = 1;
        return 0;     /* no symbols, but wait for decoding to report error */
    }
    for (min = 1; min <= MAXBITS; min++)
        if (count[min] != 0) break;
    if (root < min) root = min;

    /* check for an over-subscribed or incomplete set of lengths */
    left = 1;
    for (len = 1; len <= MAXBITS; len++) {
        left <<= 1;
        left -= count[len];
        if (left < 0) return -1;        /* over-subscribed */
    }
    if (left > 0 && (type == CODES || max != 1))
        return -1;                      /* incomplete set */

    /* generate offsets into symbol table for each length for sorting */
    offs[1] = 0;
    for (len = 1; len < MAXBITS; len++)
        offs[len + 1] = offs[len] + count[len];

    /* sort symbols by length, by symbol order within each length */
    for (sym = 0; sym < codes; sym++)
        if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;

    /*
       Create and fill in decoding tables.  In this loop, the table being
       filled is at next and has curr index bits.  The code being used is huff
       with length len.  That code is converted to an index by dropping drop
       bits off of the bottom.  For codes where len is less than drop + curr,
       those top drop + curr - len bits are incremented through all values to
       fill the table with replicated entries.

       root is the number of index bits for the root table.  When len exceeds
       root, sub-tables are created pointed to by the root entry with an index
       of the low root bits of huff.  This is saved in low to check for when a
       new sub-table should be started.  drop is zero when the root table is
       being filled, and drop is root when sub-tables are being filled.

       When a new sub-table is needed, it is necessary to look ahead in the
       code lengths to determine what size sub-table is needed.  The length
       counts are used for this, and so count[] is decremented as codes are
       entered in the tables.

       used keeps track of how many table entries have been allocated from the
       provided *table space.  It is checked when a LENS table is being made
       against the space in *table, ENOUGH, minus the maximum space needed by
       the worst case distance code, MAXD.  This should never happen, but the
       sufficiency of ENOUGH has not been proven exhaustively, hence the check.
       This assumes that when type == LENS, bits == 9.

       sym increments through all symbols, and the loop terminates when
       all codes of length max, i.e. all codes, have been processed.  This
       routine permits incomplete codes, so another loop after this one fills
       in the rest of the decoding tables with invalid code markers.
     */

    /* set up for code type */
    switch (type) {
    case CODES:
        base = extra = work;    /* dummy value--not used */
        end = 19;
        break;
    case LENS:
        base = lbase;
        base -= 257;
        extra = lext;
        extra -= 257;
        end = 256;
        break;
    default:            /* DISTS */
        base = dbase;
        extra = dext;
        end = -1;
    }

    /* initialize state for loop */
    huff = 0;                   /* starting code */
    sym = 0;                    /* starting code symbol */
    len = min;                  /* starting code length */
    next = *table;              /* current table to fill in */
    curr = root;                /* current table index bits */
    drop = 0;                   /* current bits to drop from code for index */
    low = (unsigned)(-1);       /* trigger new sub-table when len > root */
    used = ((unsigned int)1) << root;          /* use root table entries */
    mask = used - 1;            /* mask for comparing low */

    /* check available table space */
    if (type == LENS && used >= ENOUGH - MAXD)
        return 1;

    /* process all codes and make table entries */
    for (;;) {
        /* create table entry */
        this.bits = (unsigned char)(len - drop);
        if ((int)(work[sym]) < end) {
            this.op = (unsigned char)0;
            this.val = work[sym];
        }
        else if ((int)(work[sym]) > end) {
            this.op = (unsigned char)(extra[work[sym]]);
            this.val = base[work[sym]];
        }
        else {
            this.op = (unsigned char)(32 + 64);         /* end of block */
            this.val = 0;
        }

        /* replicate for those indices with low len bits equal to huff */
        incr = ((unsigned int)1) << (len - drop);
        fill = ((unsigned int)1) << curr;
        min = fill;                 /* save offset to next table */
        do {
            fill -= incr;
            next[(huff >> drop) + fill] = this;
        } while (fill != 0);

        /* backwards increment the len-bit code huff */
        incr = ((unsigned int)1) << (len - 1);
        while (huff & incr)
            incr >>= 1;
        if (incr != 0) {
            huff &= incr - 1;
            huff += incr;
        }
        else
            huff = 0;

        /* go to next symbol, update count, len */
        sym++;
        if (--(count[len]) == 0) {
            if (len == max) break;
            len = lens[work[sym]];
        }

        /* create new sub-table if needed */
        if (len > root && (huff & mask) != low) {
            /* if first time, transition to sub-tables */
            if (drop == 0)
                drop = root;

            /* increment past last table */
            next += min;            /* here min is 1 << curr */

            /* determine length of next table */
            curr = len - drop;
            left = (int)(1 << curr);
            while (curr + drop < max) {
                left -= count[curr + drop];
                if (left <= 0) break;
                curr++;
                left <<= 1;
            }

            /* check for enough space */
            used += ((unsigned int)1) << curr;
            if (type == LENS && used >= ENOUGH - MAXD)
                return 1;

            /* point entry in root table to sub-table */
            low = huff & mask;
            (*table)[low].op = (unsigned char)curr;
            (*table)[low].bits = (unsigned char)root;
            (*table)[low].val = (unsigned short)(next - *table);
        }
    }

    /*
       Fill in rest of table for incomplete codes.  This loop is similar to the
       loop above in incrementing huff for table indices.  It is assumed that
       len is equal to curr + drop, so there is no loop needed to increment
       through high index bits.  When the current sub-table is filled, the loop
       drops back to the root table to fill in any remaining entries there.
     */
    this.op = (unsigned char)64;                /* invalid code marker */
    this.bits = (unsigned char)(len - drop);
    this.val = (unsigned short)0;
    while (huff != 0) {
        /* when done with sub-table, drop back to root table */
        if (drop != 0 && (huff & mask) != low) {
            drop = 0;
            len = root;
            next = *table;
            this.bits = (unsigned char)len;
        }

        /* put invalid code marker in table */
        next[huff >> drop] = this;

        /* backwards increment the len-bit code huff */
        incr = ((unsigned int)1) << (len - 1);
        while (huff & incr)
            incr >>= 1;
        if (incr != 0) {
            huff &= incr - 1;
            huff += incr;
        }
        else
            huff = 0;
    }

    /* set return parameters */
    *table += used;
    *bits = root;
    return 0;
}

#endif /* _INFTREES_C */

#ifndef _INFFAST_C
#define _INFFAST_C	1

/* Allow machine dependent optimization for post-increment or pre-increment.
   Based on testing to date,
   Pre-increment preferred for:
   - PowerPC G3 (Adler)
   - MIPS R5000 (Randers-Pehrson)
   Post-increment preferred for:
   - none
   No measurable difference:
   - Pentium III (Anderson)
   - M68060 (Nikl)
 */
#undef	OFF		/* (ancient) sunos <locale.h> */
#ifdef POSTINC
#  define OFF 0
#  define PUP(a) *(a)++
#else
#  define OFF 1
#  define PUP(a) *++(a)
#endif

/*
   Decode literal, length, and distance codes and write out the resulting
   literal and match bytes until either not enough input or output is
   available, an end-of-block is encountered, or a data error is encountered.
   When large enough input and output buffers are supplied to inflate(), for
   example, a 16K input buffer and a 64K output buffer, more than 95% of the
   inflate execution time is spent in this routine.

   Entry assumptions:

        state->mode == LEN
        strm->avail_in >= 6
        strm->avail_out >= 258
        start >= strm->avail_out
        state->bits < 8

   On return, state->mode is one of:

        LEN -- ran out of enough output space or enough available input
        TYPE -- reached end of block code, inflate() to interpret next block
        BAD -- error in block data

   Notes:

    - The maximum input bits used by a length/distance pair is 15 bits for the
      length code, 5 bits for the length extra, 15 bits for the distance code,
      and 13 bits for the distance extra.  This totals 48 bits, or six bytes.
      Therefore if strm->avail_in >= 6, then there is enough input to avoid
      checking for available input while decoding.

    - The maximum bytes that a single length/distance pair can output is 258
      bytes, which is the maximum length that can be coded.  inflate_fast()
      requires strm->avail_out >= 258 for each loop to avoid checking for
      output space.
 */
void inflate_fast(strm, start)
z_streamp strm;
unsigned start;         /* inflate()'s starting value for strm->avail_out */
{
    struct inflate_state FAR *state;
    unsigned char FAR *in;      /* local strm->next_in */
    unsigned char FAR *last;    /* while in < last, enough input available */
    unsigned char FAR *out;     /* local strm->next_out */
    unsigned char FAR *beg;     /* inflate()'s initial strm->next_out */
    unsigned char FAR *end;     /* while out < end, enough space available */
#ifdef INFLATE_STRICT
    unsigned dmax;              /* maximum distance from zlib header */
#endif
    unsigned wsize;             /* window size or zero if not using window */
    unsigned whave;             /* valid bytes in the window */
    unsigned write;             /* window write index */
    unsigned char FAR *window;  /* allocated sliding window, if wsize != 0 */
    unsigned long hold;         /* local strm->hold */
    unsigned bits;              /* local strm->bits */
    code const FAR *lcode;      /* local strm->lencode */
    code const FAR *dcode;      /* local strm->distcode */
    unsigned lmask;             /* mask for first level of length codes */
    unsigned dmask;             /* mask for first level of distance codes */
    code this;                  /* retrieved table entry */
    unsigned op;                /* code bits, operation, extra bits, or */
                                /*  window position, window bytes to copy */
    unsigned len;               /* match length, unused bytes */
    unsigned dist;              /* match distance */
    unsigned char FAR *from;    /* where to copy match from */

    /* copy state to local variables */
    state = (struct inflate_state FAR *)strm->state;
    in = strm->next_in - OFF;
    last = in + (strm->avail_in - 5);
    out = strm->next_out - OFF;
    beg = out - (start - strm->avail_out);
    end = out + (strm->avail_out - 257);
#ifdef INFLATE_STRICT
    dmax = state->dmax;
#endif
    wsize = state->wsize;
    whave = state->whave;
    write = state->write;
    window = state->window;
    hold = state->hold;
    bits = state->bits;
    lcode = state->lencode;
    dcode = state->distcode;
    lmask = (((unsigned int)1) << state->lenbits) - 1;
    dmask = (((unsigned int)1) << state->distbits) - 1;

    /* decode literals and length/distances until end-of-block or not enough
       input data or output space */
    do {
        if (bits < 15) {
            hold += (unsigned long)(PUP(in)) << bits;
            bits += 8;
            hold += (unsigned long)(PUP(in)) << bits;
            bits += 8;
        }
        this = lcode[hold & lmask];
      dolen:
        op = (unsigned)(this.bits);
        hold >>= op;
        bits -= op;
        op = (unsigned)(this.op);
        if (op == 0) {                          /* literal */
            Tracevv((stderr, this.val >= 0x20 && this.val < 0x7f ?
                    "inflate:         literal '%c'\n" :
                    "inflate:         literal 0x%02x\n", this.val));
            PUP(out) = (unsigned char)(this.val);
        }
        else if (op & 16) {                     /* length base */
            len = (unsigned)(this.val);
            op &= 15;                           /* number of extra bits */
            if (op) {
                if (bits < op) {
                    hold += (unsigned long)(PUP(in)) << bits;
                    bits += 8;
                }
                len += (unsigned)hold & ((((unsigned int)1) << op) - 1);
                hold >>= op;
                bits -= op;
            }
            Tracevv((stderr, "inflate:         length %u\n", len));
            if (bits < 15) {
                hold += (unsigned long)(PUP(in)) << bits;
                bits += 8;
                hold += (unsigned long)(PUP(in)) << bits;
                bits += 8;
            }
            this = dcode[hold & dmask];
          dodist:
            op = (unsigned)(this.bits);
            hold >>= op;
            bits -= op;
            op = (unsigned)(this.op);
            if (op & 16) {                      /* distance base */
                dist = (unsigned)(this.val);
                op &= 15;                       /* number of extra bits */
                if (bits < op) {
                    hold += (unsigned long)(PUP(in)) << bits;
                    bits += 8;
                    if (bits < op) {
                        hold += (unsigned long)(PUP(in)) << bits;
                        bits += 8;
                    }
                }
                dist += (unsigned)hold & ((((unsigned int)1) << op) - 1);
#ifdef INFLATE_STRICT
                if (dist > dmax) {
                    strm->msg = (char *)"invalid distance too far back";
                    state->mode = BAD;
                    break;
                }
#endif
                hold >>= op;
                bits -= op;
                Tracevv((stderr, "inflate:         distance %u\n", dist));
                op = (unsigned)(out - beg);     /* max distance in output */
                if (dist > op) {                /* see if copy from window */
                    op = dist - op;             /* distance back in window */
                    if (op > whave) {
                        strm->msg = (char *)"invalid distance too far back";
                        state->mode = BAD;
                        break;
                    }
                    from = window - OFF;
                    if (write == 0) {           /* very common case */
                        from += wsize - op;
                        if (op < len) {         /* some from window */
                            len -= op;
                            do {
                                PUP(out) = PUP(from);
                            } while (--op);
                            from = out - dist;  /* rest from output */
                        }
                    }
                    else if (write < op) {      /* wrap around window */
                        from += wsize + write - op;
                        op -= write;
                        if (op < len) {         /* some from end of window */
                            len -= op;
                            do {
                                PUP(out) = PUP(from);
                            } while (--op);
                            from = window - OFF;
                            if (write < len) {  /* some from start of window */
                                op = write;
                                len -= op;
                                do {
                                    PUP(out) = PUP(from);
                                } while (--op);
                                from = out - dist;      /* rest from output */
                            }
                        }
                    }
                    else {                      /* contiguous in window */
                        from += write - op;
                        if (op < len) {         /* some from window */
                            len -= op;
                            do {
                                PUP(out) = PUP(from);
                            } while (--op);
                            from = out - dist;  /* rest from output */
                        }
                    }
                    while (len > 2) {
                        PUP(out) = PUP(from);
                        PUP(out) = PUP(from);
                        PUP(out) = PUP(from);
                        len -= 3;
                    }
                    if (len) {
                        PUP(out) = PUP(from);
                        if (len > 1)
                            PUP(out) = PUP(from);
                    }
                }
                else {
                    from = out - dist;          /* copy direct from output */
                    do {                        /* minimum length is three */
                        PUP(out) = PUP(from);
                        PUP(out) = PUP(from);
                        PUP(out) = PUP(from);
                        len -= 3;
                    } while (len > 2);
                    if (len) {
                        PUP(out) = PUP(from);
                        if (len > 1)
                            PUP(out) = PUP(from);
                    }
                }
            }
            else if ((op & 64) == 0) {          /* 2nd level distance code */
                this = dcode[this.val + (hold & ((((unsigned int)1) << op) - 1))];
                goto dodist;
            }
            else {
                strm->msg = (char *)"invalid distance code";
                state->mode = BAD;
                break;
            }
        }
        else if ((op & 64) == 0) {              /* 2nd level length code */
            this = lcode[this.val + (hold & ((((unsigned int)1) << op) - 1))];
            goto dolen;
        }
        else if (op & 32) {                     /* end-of-block */
            Tracevv((stderr, "inflate:         end of block\n"));
            state->mode = TYPE;
            break;
        }
        else {
            strm->msg = (char *)"invalid literal/length code";
            state->mode = BAD;
            break;
        }
    } while (in < last && out < end);

    /* return unused bytes (on entry, bits < 8, so in won't go too far back) */
    len = bits >> 3;
    in -= len;
    bits -= len << 3;
    hold &= (((unsigned int)1) << bits) - 1;

    /* update state and return */
    strm->next_in = in + OFF;
    strm->next_out = out + OFF;
    strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last));
    strm->avail_out = (unsigned)(out < end ?
                                 257 + (end - out) : 257 - (out - end));
    state->hold = hold;
    state->bits = bits;
    return;
}

/*
   inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe):
   - Using bit fields for code structure
   - Different op definition to avoid & for extra bits (do & for table bits)
   - Three separate decoding do-loops for direct, window, and write == 0
   - Special case for distance > 1 copies to do overlapped load and store copy
   - Explicit branch predictions (based on measured branch probabilities)
   - Deferring match copy and interspersed it with decoding subsequent codes
   - Swapping literal/length else
   - Swapping window/direct else
   - Larger unrolled copy loops (three is about right)
   - Moving len -= 3 statement into middle of loop
 */

#endif /* _INFFAST_C */

#ifndef _INFLATE_C
#define _INFLATE_C	1

/* function prototypes */
local void fixedtables OF((struct inflate_state FAR *state));
local int updatewindow OF((z_streamp strm, unsigned out));
#ifdef BUILDFIXED
   void makefixed OF((void));
#endif
local unsigned syncsearch OF((unsigned FAR *have, unsigned char FAR *buf,
                              unsigned len));

int ZEXPORT inflateReset(strm)
z_streamp strm;
{
    struct inflate_state FAR *state;

    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state FAR *)strm->state;
    strm->total_in = strm->total_out = state->total = 0;
    strm->msg = Z_NULL;
    strm->adler = 1;        /* to support ill-conceived Java test suite */
    state->mode = HEAD;
    state->last = 0;
    state->havedict = 0;
    state->dmax = 32768;
    state->head = Z_NULL;
    state->wsize = 0;
    state->whave = 0;
    state->write = 0;
    state->hold = 0;
    state->bits = 0;
    state->lencode = state->distcode = state->next = state->codes;
    Tracev((stderr, "inflate: reset\n"));
    return Z_OK;
}

int ZEXPORT inflatePrime(strm, bits, value)
z_streamp strm;
int bits;
int value;
{
    struct inflate_state FAR *state;

    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state FAR *)strm->state;
    if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR;
    value &= (1L << bits) - 1;
    state->hold += value << state->bits;
    state->bits += bits;
    return Z_OK;
}

int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size)
z_streamp strm;
int windowBits;
const char *version;
int stream_size;
{
    struct inflate_state FAR *state;

    if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
        stream_size != (int)(sizeof(z_stream)))
        return Z_VERSION_ERROR;
    if (strm == Z_NULL) return Z_STREAM_ERROR;
    strm->msg = Z_NULL;                 /* in case we return an error */
    if (strm->zalloc == (alloc_func)0) {
        strm->zalloc = zcalloc;
        strm->opaque = (voidpf)0;
    }
    if (strm->zfree == (free_func)0) strm->zfree = zcfree;
    state = (struct inflate_state FAR *)
            ZALLOC(strm, 1, sizeof(struct inflate_state));
    if (state == Z_NULL) return Z_MEM_ERROR;
    Tracev((stderr, "inflate: allocated\n"));
    strm->state = (struct internal_state FAR *)state;
    if (windowBits < 0) {
        state->wrap = 0;
        windowBits = -windowBits;
    }
    else {
        state->wrap = (windowBits >> 4) + 1;
#ifdef GUNZIP
        if (windowBits < 48) windowBits &= 15;
#endif
    }
    if (windowBits < 8 || windowBits > 15) {
        ZFREE(strm, state);
        strm->state = Z_NULL;
        return Z_STREAM_ERROR;
    }
    state->wbits = (unsigned)windowBits;
    state->window = Z_NULL;
    return inflateReset(strm);
}

int ZEXPORT inflateInit_(strm, version, stream_size)
z_streamp strm;
const char *version;
int stream_size;
{
    return inflateInit2_(strm, DEF_WBITS, version, stream_size);
}

/*
   Return state with length and distance decoding tables and index sizes set to
   fixed code decoding.  Normally this returns fixed tables from inffixed.h.
   If BUILDFIXED is defined, then instead this routine builds the tables the
   first time it's called, and returns those tables the first time and
   thereafter.  This reduces the size of the code by about 2K bytes, in
   exchange for a little execution time.  However, BUILDFIXED should not be
   used for threaded applications, since the rewriting of the tables and virgin
   may not be thread-safe.
 */
local void fixedtables(state)
struct inflate_state FAR *state;
{
#ifndef _INFFIXED_H
#define _INFFIXED_H	1
    static const code lenfix[512] = {
        {96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48},
        {0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128},
        {0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59},
        {0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176},
        {0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20},
        {21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100},
        {0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8},
        {0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216},
        {18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76},
        {0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114},
        {0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2},
        {0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148},
        {20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42},
        {0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86},
        {0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15},
        {0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236},
        {16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62},
        {0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142},
        {0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31},
        {0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162},
        {0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25},
        {0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105},
        {0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4},
        {0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202},
        {17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69},
        {0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125},
        {0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13},
        {0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195},
        {19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35},
        {0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91},
        {0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19},
        {0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246},
        {16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55},
        {0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135},
        {0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99},
        {0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190},
        {0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16},
        {20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96},
        {0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6},
        {0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209},
        {17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72},
        {0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116},
        {0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4},
        {0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153},
        {20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44},
        {0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82},
        {0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11},
        {0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229},
        {16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58},
        {0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138},
        {0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51},
        {0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173},
        {0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30},
        {0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110},
        {0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0},
        {0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195},
        {16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65},
        {0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121},
        {0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9},
        {0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258},
        {19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37},
        {0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93},
        {0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23},
        {0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251},
        {16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51},
        {0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131},
        {0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67},
        {0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183},
        {0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23},
        {64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103},
        {0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9},
        {0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223},
        {18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79},
        {0,9,255}
    };

    static const code distfix[32] = {
        {16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025},
        {21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193},
        {18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385},
        {19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577},
        {16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073},
        {22,5,193},{64,5,0}
    };
#endif /* _INFFIXED_H */
    state->lencode = lenfix;
    state->lenbits = 9;
    state->distcode = distfix;
    state->distbits = 5;
}

/*
   Update the window with the last wsize (normally 32K) bytes written before
   returning.  If window does not exist yet, create it.  This is only called
   when a window is already in use, or when output has been written during this
   inflate call, but the end of the deflate stream has not been reached yet.
   It is also called to create a window for dictionary data when a dictionary
   is loaded.

   Providing output buffers larger than 32K to inflate() should provide a speed
   advantage, since only the last 32K of output is copied to the sliding window
   upon return from inflate(), and since all distances after the first 32K of
   output will fall in the output data, making match copies simpler and faster.
   The advantage may be dependent on the size of the processor's data caches.
 */
local int updatewindow(strm, out)
z_streamp strm;
unsigned out;
{
    struct inflate_state FAR *state;
    unsigned copy, dist;

    state = (struct inflate_state FAR *)strm->state;

    /* if it hasn't been done already, allocate space for the window */
    if (state->window == Z_NULL) {
        state->window = (unsigned char FAR *)
                        ZALLOC(strm, ((unsigned int)1) << state->wbits,
                               sizeof(unsigned char));
        if (state->window == Z_NULL) return 1;
    }

    /* if window not in use yet, initialize */
    if (state->wsize == 0) {
        state->wsize = ((unsigned int)1) << state->wbits;
        state->write = 0;
        state->whave = 0;
    }

    /* copy state->wsize or less output bytes into the circular window */
    copy = out - strm->avail_out;
    if (copy >= state->wsize) {
        zmemcpy(state->window, strm->next_out - state->wsize, state->wsize);
        state->write = 0;
        state->whave = state->wsize;
    }
    else {
        dist = state->wsize - state->write;
        if (dist > copy) dist = copy;
        zmemcpy(state->window + state->write, strm->next_out - copy, dist);
        copy -= dist;
        if (copy) {
            zmemcpy(state->window, strm->next_out - copy, copy);
            state->write = copy;
            state->whave = state->wsize;
        }
        else {
            state->write += dist;
            if (state->write == state->wsize) state->write = 0;
            if (state->whave < state->wsize) state->whave += dist;
        }
    }
    return 0;
}

/* Macros for inflate(): */

/* check function to use adler32() for zlib or crc32() for gzip */
#ifdef GUNZIP
#  define UPDATE(check, buf, len) \
    (state->flags ? crc32(check, buf, len) : adler32(check, buf, len))
#else
#  define UPDATE(check, buf, len) adler32(check, buf, len)
#endif

/* check macros for header crc */
#ifdef GUNZIP
#  define CRC2(check, word) \
    do { \
        hbuf[0] = (unsigned char)(word); \
        hbuf[1] = (unsigned char)((word) >> 8); \
        check = crc32(check, hbuf, 2); \
    } while (0)

#  define CRC4(check, word) \
    do { \
        hbuf[0] = (unsigned char)(word); \
        hbuf[1] = (unsigned char)((word) >> 8); \
        hbuf[2] = (unsigned char)((word) >> 16); \
        hbuf[3] = (unsigned char)((word) >> 24); \
        check = crc32(check, hbuf, 4); \
    } while (0)
#endif

/* Load registers with state in inflate() for speed */
#define LOAD() \
    do { \
        put = strm->next_out; \
        left = strm->avail_out; \
        next = strm->next_in; \
        have = strm->avail_in; \
        hold = state->hold; \
        bits = state->bits; \
    } while (0)

/* Restore state from registers in inflate() */
#define RESTORE() \
    do { \
        strm->next_out = put; \
        strm->avail_out = left; \
        strm->next_in = next; \
        strm->avail_in = have; \
        state->hold = hold; \
        state->bits = bits; \
    } while (0)

/* Clear the input bit accumulator */
#define INITBITS() \
    do { \
        hold = 0; \
        bits = 0; \
    } while (0)

/* Get a byte of input into the bit accumulator, or return from inflate()
   if there is no input available. */
#define PULLBYTE() \
    do { \
        if (have == 0) goto inf_leave; \
        have--; \
        hold += (unsigned long)(*next++) << bits; \
        bits += 8; \
    } while (0)

/* Assure that there are at least n bits in the bit accumulator.  If there is
   not enough available input to do that, then return from inflate(). */
#define NEEDBITS(n) \
    do { \
        while (bits < (unsigned)(n)) \
            PULLBYTE(); \
    } while (0)

/* Return the low n bits of the bit accumulator (n < 16) */
#define BITS(n) \
    ((unsigned)hold & ((((unsigned int)1) << (n)) - 1))

/* Remove n bits from the bit accumulator */
#define DROPBITS(n) \
    do { \
        hold >>= (n); \
        bits -= (unsigned)(n); \
    } while (0)

/* Remove zero to seven bits as needed to go to a byte boundary */
#define BYTEBITS() \
    do { \
        hold >>= bits & 7; \
        bits -= bits & 7; \
    } while (0)

/* Reverse the bytes in a 32-bit value */
#define REVERSE(q) \
    ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
     (((q) & 0xff00) << 8) + (((q) & 0xff) << 24))

/*
   inflate() uses a state machine to process as much input data and generate as
   much output data as possible before returning.  The state machine is
   structured roughly as follows:

    for (;;) switch (state) {
    ...
    case STATEn:
        if (not enough input data or output space to make progress)
            return;
        ... make progress ...
        state = STATEm;
        break;
    ...
    }

   so when inflate() is called again, the same case is attempted again, and
   if the appropriate resources are provided, the machine proceeds to the
   next state.  The NEEDBITS() macro is usually the way the state evaluates
   whether it can proceed or should return.  NEEDBITS() does the return if
   the requested bits are not available.  The typical use of the BITS macros
   is:

        NEEDBITS(n);
        ... do something with BITS(n) ...
        DROPBITS(n);

   where NEEDBITS(n) either returns from inflate() if there isn't enough
   input left to load n bits into the accumulator, or it continues.  BITS(n)
   gives the low n bits in the accumulator.  When done, DROPBITS(n) drops
   the low n bits off the accumulator.  INITBITS() clears the accumulator
   and sets the number of available bits to zero.  BYTEBITS() discards just
   enough bits to put the accumulator on a byte boundary.  After BYTEBITS()
   and a NEEDBITS(8), then BITS(8) would return the next byte in the stream.

   NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return
   if there is no input available.  The decoding of variable length codes uses
   PULLBYTE() directly in order to pull just enough bytes to decode the next
   code, and no more.

   Some states loop until they get enough input, making sure that enough
   state information is maintained to continue the loop where it left off
   if NEEDBITS() returns in the loop.  For example, want, need, and keep
   would all have to actually be part of the saved state in case NEEDBITS()
   returns:

    case STATEw:
        while (want < need) {
            NEEDBITS(n);
            keep[want++] = BITS(n);
            DROPBITS(n);
        }
        state = STATEx;
    case STATEx:

   As shown above, if the next state is also the next case, then the break
   is omitted.

   A state may also return if there is not enough output space available to
   complete that state.  Those states are copying stored data, writing a
   literal byte, and copying a matching string.

   When returning, a "goto inf_leave" is used to update the total counters,
   update the check value, and determine whether any progress has been made
   during that inflate() call in order to return the proper return code.
   Progress is defined as a change in either strm->avail_in or strm->avail_out.
   When there is a window, goto inf_leave will update the window with the last
   output written.  If a goto inf_leave occurs in the middle of decompression
   and there is no window currently, goto inf_leave will create one and copy
   output to the window for the next call of inflate().

   In this implementation, the flush parameter of inflate() only affects the
   return code (per zlib.h).  inflate() always writes as much as possible to
   strm->next_out, given the space available and the provided input--the effect
   documented in zlib.h of Z_SYNC_FLUSH.  Furthermore, inflate() always defers
   the allocation of and copying into a sliding window until necessary, which
   provides the effect documented in zlib.h for Z_FINISH when the entire input
   stream available.  So the only thing the flush parameter actually does is:
   when flush is set to Z_FINISH, inflate() cannot return Z_OK.  Instead it
   will return Z_BUF_ERROR if it has not reached the end of the stream.
 */

int ZEXPORT inflate(strm, flush)
z_streamp strm;
int flush;
{
    struct inflate_state FAR *state;
    unsigned char FAR *next;    /* next input */
    unsigned char FAR *put;     /* next output */
    unsigned have, left;        /* available input and output */
    unsigned long hold;         /* bit buffer */
    unsigned bits;              /* bits in bit buffer */
    unsigned in, out;           /* save starting available input and output */
    unsigned copy;              /* number of stored or match bytes to copy */
    unsigned char FAR *from;    /* where to copy match bytes from */
    code this;                  /* current decoding table entry */
    code last;                  /* parent table entry */
    unsigned len;               /* length to copy for repeats, bits to drop */
    int ret;                    /* return code */
#ifdef GUNZIP
    unsigned char hbuf[4];      /* buffer for gzip header crc calculation */
#endif
    static const unsigned short order[19] = /* permutation of code lengths */
        {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};

    if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL ||
        (strm->next_in == Z_NULL && strm->avail_in != 0))
        return Z_STREAM_ERROR;

    state = (struct inflate_state FAR *)strm->state;
    if (state->mode == TYPE) state->mode = TYPEDO;      /* skip check */
    LOAD();
    in = have;
    out = left;
    ret = Z_OK;
    for (;;)
        switch (state->mode) {
        case HEAD:
            if (state->wrap == 0) {
                state->mode = TYPEDO;
                break;
            }
            NEEDBITS(16);
#ifdef GUNZIP
            if ((state->wrap & 2) && hold == 0x8b1f) {  /* gzip header */
                state->check = crc32(0L, Z_NULL, 0);
                CRC2(state->check, hold);
                INITBITS();
                state->mode = FLAGS;
                break;
            }
            state->flags = 0;           /* expect zlib header */
            if (state->head != Z_NULL)
                state->head->done = -1;
            if (!(state->wrap & 1) ||   /* check if zlib header allowed */
#else
            if (
#endif
                ((BITS(8) << 8) + (hold >> 8)) % 31) {
                strm->msg = (char *)"incorrect header check";
                state->mode = BAD;
                break;
            }
            if (BITS(4) != Z_DEFLATED) {
                strm->msg = (char *)"unknown compression method";
                state->mode = BAD;
                break;
            }
            DROPBITS(4);
            len = BITS(4) + 8;
            if (len > state->wbits) {
                strm->msg = (char *)"invalid window size";
                state->mode = BAD;
                break;
            }
            state->dmax = ((unsigned int)1) << len;
            Tracev((stderr, "inflate:   zlib header ok\n"));
            strm->adler = state->check = adler32(0L, Z_NULL, 0);
            state->mode = hold & 0x200 ? DICTID : TYPE;
            INITBITS();
            break;
#ifdef GUNZIP
        case FLAGS:
            NEEDBITS(16);
            state->flags = (int)(hold);
            if ((state->flags & 0xff) != Z_DEFLATED) {
                strm->msg = (char *)"unknown compression method";
                state->mode = BAD;
                break;
            }
            if (state->flags & 0xe000) {
                strm->msg = (char *)"unknown header flags set";
                state->mode = BAD;
                break;
            }
            if (state->head != Z_NULL)
                state->head->text = (int)((hold >> 8) & 1);
            if (state->flags & 0x0200) CRC2(state->check, hold);
            INITBITS();
            state->mode = TIME;
        case TIME:
            NEEDBITS(32);
            if (state->head != Z_NULL)
                state->head->time = hold;
            if (state->flags & 0x0200) CRC4(state->check, hold);
            INITBITS();
            state->mode = OS;
        case OS:
            NEEDBITS(16);
            if (state->head != Z_NULL) {
                state->head->xflags = (int)(hold & 0xff);
                state->head->os = (int)(hold >> 8);
            }
            if (state->flags & 0x0200) CRC2(state->check, hold);
            INITBITS();
            state->mode = EXLEN;
        case EXLEN:
            if (state->flags & 0x0400) {
                NEEDBITS(16);
                state->length = (unsigned)(hold);
                if (state->head != Z_NULL)
                    state->head->extra_len = (unsigned)hold;
                if (state->flags & 0x0200) CRC2(state->check, hold);
                INITBITS();
            }
            else if (state->head != Z_NULL)
                state->head->extra = Z_NULL;
            state->mode = EXTRA;
        case EXTRA:
            if (state->flags & 0x0400) {
                copy = state->length;
                if (copy > have) copy = have;
                if (copy) {
                    if (state->head != Z_NULL &&
                        state->head->extra != Z_NULL) {
                        len = state->head->extra_len - state->length;
                        zmemcpy(state->head->extra + len, next,
                                len + copy > state->head->extra_max ?
                                state->head->extra_max - len : copy);
                    }
                    if (state->flags & 0x0200)
                        state->check = crc32(state->check, next, copy);
                    have -= copy;
                    next += copy;
                    state->length -= copy;
                }
                if (state->length) goto inf_leave;
            }
            state->length = 0;
            state->mode = NAME;
        case NAME:
            if (state->flags & 0x0800) {
                if (have == 0) goto inf_leave;
                copy = 0;
                do {
                    len = (unsigned)(next[copy++]);
                    if (state->head != Z_NULL &&
                            state->head->name != Z_NULL &&
                            state->length < state->head->name_max)
                        state->head->name[state->length++] = len;
                } while (len && copy < have);
                if (state->flags & 0x0200)
                    state->check = crc32(state->check, next, copy);
                have -= copy;
                next += copy;
                if (len) goto inf_leave;
            }
            else if (state->head != Z_NULL)
                state->head->name = Z_NULL;
            state->length = 0;
            state->mode = COMMENT;
        case COMMENT:
            if (state->flags & 0x1000) {
                if (have == 0) goto inf_leave;
                copy = 0;
                do {
                    len = (unsigned)(next[copy++]);
                    if (state->head != Z_NULL &&
                            state->head->comment != Z_NULL &&
                            state->length < state->head->comm_max)
                        state->head->comment[state->length++] = len;
                } while (len && copy < have);
                if (state->flags & 0x0200)
                    state->check = crc32(state->check, next, copy);
                have -= copy;
                next += copy;
                if (len) goto inf_leave;
            }
            else if (state->head != Z_NULL)
                state->head->comment = Z_NULL;
            state->mode = HCRC;
        case HCRC:
            if (state->flags & 0x0200) {
                NEEDBITS(16);
                if (hold != (state->check & 0xffff)) {
                    strm->msg = (char *)"header crc mismatch";
                    state->mode = BAD;
                    break;
                }
                INITBITS();
            }
            if (state->head != Z_NULL) {
                state->head->hcrc = (int)((state->flags >> 9) & 1);
                state->head->done = 1;
            }
            strm->adler = state->check = crc32(0L, Z_NULL, 0);
            state->mode = TYPE;
            break;
#endif
        case DICTID:
            NEEDBITS(32);
            strm->adler = state->check = REVERSE(hold);
            INITBITS();
            state->mode = DICT;
        case DICT:
            if (state->havedict == 0) {
                RESTORE();
                return Z_NEED_DICT;
            }
            strm->adler = state->check = adler32(0L, Z_NULL, 0);
            state->mode = TYPE;
        case TYPE:
            if (flush == Z_BLOCK) goto inf_leave;
        case TYPEDO:
            if (state->last) {
                BYTEBITS();
                state->mode = CHECK;
                break;
            }
            NEEDBITS(3);
            state->last = BITS(1);
            DROPBITS(1);
            switch (BITS(2)) {
            case 0:                             /* stored block */
                Tracev((stderr, "inflate:     stored block%s\n",
                        state->last ? " (last)" : ""));
                state->mode = STORED;
                break;
            case 1:                             /* fixed block */
                fixedtables(state);
                Tracev((stderr, "inflate:     fixed codes block%s\n",
                        state->last ? " (last)" : ""));
                state->mode = LEN;              /* decode codes */
                break;
            case 2:                             /* dynamic block */
                Tracev((stderr, "inflate:     dynamic codes block%s\n",
                        state->last ? " (last)" : ""));
                state->mode = TABLE;
                break;
            case 3:
                strm->msg = (char *)"invalid block type";
                state->mode = BAD;
            }
            DROPBITS(2);
            break;
        case STORED:
            BYTEBITS();                         /* go to byte boundary */
            NEEDBITS(32);
            if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) {
                strm->msg = (char *)"invalid stored block lengths";
                state->mode = BAD;
                break;
            }
            state->length = (unsigned)hold & 0xffff;
            Tracev((stderr, "inflate:       stored length %u\n",
                    state->length));
            INITBITS();
            state->mode = COPY;
        case COPY:
            copy = state->length;
            if (copy) {
                if (copy > have) copy = have;
                if (copy > left) copy = left;
                if (copy == 0) goto inf_leave;
                zmemcpy(put, next, copy);
                have -= copy;
                next += copy;
                left -= copy;
                put += copy;
                state->length -= copy;
                break;
            }
            Tracev((stderr, "inflate:       stored end\n"));
            state->mode = TYPE;
            break;
        case TABLE:
            NEEDBITS(14);
            state->nlen = BITS(5) + 257;
            DROPBITS(5);
            state->ndist = BITS(5) + 1;
            DROPBITS(5);
            state->ncode = BITS(4) + 4;
            DROPBITS(4);
#ifndef PKZIP_BUG_WORKAROUND
            if (state->nlen > 286 || state->ndist > 30) {
                strm->msg = (char *)"too many length or distance symbols";
                state->mode = BAD;
                break;
            }
#endif
            Tracev((stderr, "inflate:       table sizes ok\n"));
            state->have = 0;
            state->mode = LENLENS;
        case LENLENS:
            while (state->have < state->ncode) {
                NEEDBITS(3);
                state->lens[order[state->have++]] = (unsigned short)BITS(3);
                DROPBITS(3);
            }
            while (state->have < 19)
                state->lens[order[state->have++]] = 0;
            state->next = state->codes;
            state->lencode = (code const FAR *)(state->next);
            state->lenbits = 7;
            ret = inflate_table(CODES, state->lens, 19, &(state->next),
                                &(state->lenbits), state->work);
            if (ret) {
                strm->msg = (char *)"invalid code lengths set";
                state->mode = BAD;
                break;
            }
            Tracev((stderr, "inflate:       code lengths ok\n"));
            state->have = 0;
            state->mode = CODELENS;
        case CODELENS:
            while (state->have < state->nlen + state->ndist) {
                for (;;) {
                    this = state->lencode[BITS(state->lenbits)];
                    if ((unsigned)(this.bits) <= bits) break;
                    PULLBYTE();
                }
                if (this.val < 16) {
                    NEEDBITS(this.bits);
                    DROPBITS(this.bits);
                    state->lens[state->have++] = this.val;
                }
                else {
                    if (this.val == 16) {
                        NEEDBITS(this.bits + 2);
                        DROPBITS(this.bits);
                        if (state->have == 0) {
                            strm->msg = (char *)"invalid bit length repeat";
                            state->mode = BAD;
                            break;
                        }
                        len = state->lens[state->have - 1];
                        copy = 3 + BITS(2);
                        DROPBITS(2);
                    }
                    else if (this.val == 17) {
                        NEEDBITS(this.bits + 3);
                        DROPBITS(this.bits);
                        len = 0;
                        copy = 3 + BITS(3);
                        DROPBITS(3);
                    }
                    else {
                        NEEDBITS(this.bits + 7);
                        DROPBITS(this.bits);
                        len = 0;
                        copy = 11 + BITS(7);
                        DROPBITS(7);
                    }
                    if (state->have + copy > state->nlen + state->ndist) {
                        strm->msg = (char *)"invalid bit length repeat";
                        state->mode = BAD;
                        break;
                    }
                    while (copy--)
                        state->lens[state->have++] = (unsigned short)len;
                }
            }

            /* handle error breaks in while */
            if (state->mode == BAD) break;

            /* build code tables */
            state->next = state->codes;
            state->lencode = (code const FAR *)(state->next);
            state->lenbits = 9;
            ret = inflate_table(LENS, state->lens, state->nlen, &(state->next),
                                &(state->lenbits), state->work);
            if (ret) {
                strm->msg = (char *)"invalid literal/lengths set";
                state->mode = BAD;
                break;
            }
            state->distcode = (code const FAR *)(state->next);
            state->distbits = 6;
            ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist,
                            &(state->next), &(state->distbits), state->work);
            if (ret) {
                strm->msg = (char *)"invalid distances set";
                state->mode = BAD;
                break;
            }
            Tracev((stderr, "inflate:       codes ok\n"));
            state->mode = LEN;
        case LEN:
            if (have >= 6 && left >= 258) {
                RESTORE();
                inflate_fast(strm, out);
                LOAD();
                break;
            }
            for (;;) {
                this = state->lencode[BITS(state->lenbits)];
                if ((unsigned)(this.bits) <= bits) break;
                PULLBYTE();
            }
            if (this.op && (this.op & 0xf0) == 0) {
                last = this;
                for (;;) {
                    this = state->lencode[last.val +
                            (BITS(last.bits + last.op) >> last.bits)];
                    if ((unsigned)(last.bits + this.bits) <= bits) break;
                    PULLBYTE();
                }
                DROPBITS(last.bits);
            }
            DROPBITS(this.bits);
            state->length = (unsigned)this.val;
            if ((int)(this.op) == 0) {
                Tracevv((stderr, this.val >= 0x20 && this.val < 0x7f ?
                        "inflate:         literal '%c'\n" :
                        "inflate:         literal 0x%02x\n", this.val));
                state->mode = LIT;
                break;
            }
            if (this.op & 32) {
                Tracevv((stderr, "inflate:         end of block\n"));
                state->mode = TYPE;
                break;
            }
            if (this.op & 64) {
                strm->msg = (char *)"invalid literal/length code";
                state->mode = BAD;
                break;
            }
            state->extra = (unsigned)(this.op) & 15;
            state->mode = LENEXT;
        case LENEXT:
            if (state->extra) {
                NEEDBITS(state->extra);
                state->length += BITS(state->extra);
                DROPBITS(state->extra);
            }
            Tracevv((stderr, "inflate:         length %u\n", state->length));
            state->mode = DIST;
        case DIST:
            for (;;) {
                this = state->distcode[BITS(state->distbits)];
                if ((unsigned)(this.bits) <= bits) break;
                PULLBYTE();
            }
            if ((this.op & 0xf0) == 0) {
                last = this;
                for (;;) {
                    this = state->distcode[last.val +
                            (BITS(last.bits + last.op) >> last.bits)];
                    if ((unsigned)(last.bits + this.bits) <= bits) break;
                    PULLBYTE();
                }
                DROPBITS(last.bits);
            }
            DROPBITS(this.bits);
            if (this.op & 64) {
                strm->msg = (char *)"invalid distance code";
                state->mode = BAD;
                break;
            }
            state->offset = (unsigned)this.val;
            state->extra = (unsigned)(this.op) & 15;
            state->mode = DISTEXT;
        case DISTEXT:
            if (state->extra) {
                NEEDBITS(state->extra);
                state->offset += BITS(state->extra);
                DROPBITS(state->extra);
            }
#ifdef INFLATE_STRICT
            if (state->offset > state->dmax) {
                strm->msg = (char *)"invalid distance too far back";
                state->mode = BAD;
                break;
            }
#endif
            if (state->offset > state->whave + out - left) {
                strm->msg = (char *)"invalid distance too far back";
                state->mode = BAD;
                break;
            }
            Tracevv((stderr, "inflate:         distance %u\n", state->offset));
            state->mode = MATCH;
        case MATCH:
            if (left == 0) goto inf_leave;
            copy = out - left;
            if (state->offset > copy) {         /* copy from window */
                copy = state->offset - copy;
                if (copy > state->write) {
                    copy -= state->write;
                    from = state->window + (state->wsize - copy);
                }
                else
                    from = state->window + (state->write - copy);
                if (copy > state->length) copy = state->length;
            }
            else {                              /* copy from output */
                from = put - state->offset;
                copy = state->length;
            }
            if (copy > left) copy = left;
            left -= copy;
            state->length -= copy;
            do {
                *put++ = *from++;
            } while (--copy);
            if (state->length == 0) state->mode = LEN;
            break;
        case LIT:
            if (left == 0) goto inf_leave;
            *put++ = (unsigned char)(state->length);
            left--;
            state->mode = LEN;
            break;
        case CHECK:
            if (state->wrap) {
                NEEDBITS(32);
                out -= left;
                strm->total_out += out;
                state->total += out;
                if (out)
                    strm->adler = state->check =
                        UPDATE(state->check, put - out, out);
                out = left;
                if ((
#ifdef GUNZIP
                     state->flags ? hold :
#endif
                     REVERSE(hold)) != state->check) {
                    strm->msg = (char *)"incorrect data check";
                    state->mode = BAD;
                    break;
                }
                INITBITS();
                Tracev((stderr, "inflate:   check matches trailer\n"));
            }
#ifdef GUNZIP
            state->mode = LENGTH;
        case LENGTH:
            if (state->wrap && state->flags) {
                NEEDBITS(32);
                if (hold != (state->total & 0xffffffff)) {
                    strm->msg = (char *)"incorrect length check";
                    state->mode = BAD;
                    break;
                }
                INITBITS();
                Tracev((stderr, "inflate:   length matches trailer\n"));
            }
#endif
            state->mode = DONE;
        case DONE:
            ret = Z_STREAM_END;
            goto inf_leave;
        case BAD:
            ret = Z_DATA_ERROR;
            goto inf_leave;
        case MEM:
            return Z_MEM_ERROR;
        case SYNC:
        default:
            return Z_STREAM_ERROR;
        }

    /*
       Return from inflate(), updating the total counts and the check value.
       If there was no progress during the inflate() call, return a buffer
       error.  Call updatewindow() to create and/or update the window state.
       Note: a memory error from inflate() is non-recoverable.
     */
  inf_leave:
    RESTORE();
    if (state->wsize || (state->mode < CHECK && out != strm->avail_out))
        if (updatewindow(strm, out)) {
            state->mode = MEM;
            return Z_MEM_ERROR;
        }
    in -= strm->avail_in;
    out -= strm->avail_out;
    strm->total_in += in;
    strm->total_out += out;
    state->total += out;
    if (state->wrap && out)
        strm->adler = state->check =
            UPDATE(state->check, strm->next_out - out, out);
    strm->data_type = state->bits + (state->last ? 64 : 0) +
                      (state->mode == TYPE ? 128 : 0);
    if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK)
        ret = Z_BUF_ERROR;
    return ret;
}

int ZEXPORT inflateEnd(strm)
z_streamp strm;
{
    struct inflate_state FAR *state;
    if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0)
        return Z_STREAM_ERROR;
    state = (struct inflate_state FAR *)strm->state;
    if (state->window != Z_NULL) ZFREE(strm, state->window);
    ZFREE(strm, strm->state);
    strm->state = Z_NULL;
    Tracev((stderr, "inflate: end\n"));
    return Z_OK;
}

int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength)
z_streamp strm;
const Bytef *dictionary;
uInt dictLength;
{
    struct inflate_state FAR *state;
    unsigned long id;

    /* check state */
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state FAR *)strm->state;
    if (state->wrap != 0 && state->mode != DICT)
        return Z_STREAM_ERROR;

    /* check for correct dictionary id */
    if (state->mode == DICT) {
        id = adler32(0L, Z_NULL, 0);
        id = adler32(id, dictionary, dictLength);
        if (id != state->check)
            return Z_DATA_ERROR;
    }

    /* copy dictionary to window */
    if (updatewindow(strm, strm->avail_out)) {
        state->mode = MEM;
        return Z_MEM_ERROR;
    }
    if (dictLength > state->wsize) {
        zmemcpy(state->window, dictionary + dictLength - state->wsize,
                state->wsize);
        state->whave = state->wsize;
    }
    else {
        zmemcpy(state->window + state->wsize - dictLength, dictionary,
                dictLength);
        state->whave = dictLength;
    }
    state->havedict = 1;
    Tracev((stderr, "inflate:   dictionary set\n"));
    return Z_OK;
}

int ZEXPORT inflateGetHeader(strm, head)
z_streamp strm;
gz_headerp head;
{
    struct inflate_state FAR *state;

    /* check state */
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state FAR *)strm->state;
    if ((state->wrap & 2) == 0) return Z_STREAM_ERROR;

    /* save header structure */
    state->head = head;
#ifdef GUNZIP
    head->done = 0;
#endif
    return Z_OK;
}

/*
   Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff.  Return when found
   or when out of input.  When called, *have is the number of pattern bytes
   found in order so far, in 0..3.  On return *have is updated to the new
   state.  If on return *have equals four, then the pattern was found and the
   return value is how many bytes were read including the last byte of the
   pattern.  If *have is less than four, then the pattern has not been found
   yet and the return value is len.  In the latter case, syncsearch() can be
   called again with more data and the *have state.  *have is initialized to
   zero for the first call.
 */
local unsigned syncsearch(have, buf, len)
unsigned FAR *have;
unsigned char FAR *buf;
unsigned len;
{
    unsigned got;
    unsigned next;

    got = *have;
    next = 0;
    while (next < len && got < 4) {
        if ((int)(buf[next]) == (got < 2 ? 0 : 0xff))
            got++;
        else if (buf[next])
            got = 0;
        else
            got = 4 - got;
        next++;
    }
    *have = got;
    return next;
}

int ZEXPORT inflateSync(strm)
z_streamp strm;
{
    unsigned len;               /* number of bytes to look at or looked at */
    unsigned long in, out;      /* temporary to save total_in and total_out */
    unsigned char buf[4];       /* to restore bit buffer to byte string */
    struct inflate_state FAR *state;

    /* check parameters */
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state FAR *)strm->state;
    if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR;

    /* if first time, start search in bit buffer */
    if (state->mode != SYNC) {
        state->mode = SYNC;
        state->hold <<= state->bits & 7;
        state->bits -= state->bits & 7;
        len = 0;
        while (state->bits >= 8) {
            buf[len++] = (unsigned char)(state->hold);
            state->hold >>= 8;
            state->bits -= 8;
        }
        state->have = 0;
        syncsearch(&(state->have), buf, len);
    }

    /* search available input */
    len = syncsearch(&(state->have), strm->next_in, strm->avail_in);
    strm->avail_in -= len;
    strm->next_in += len;
    strm->total_in += len;

    /* return no joy or set up to restart inflate() on a new block */
    if (state->have != 4) return Z_DATA_ERROR;
    in = strm->total_in;  out = strm->total_out;
    inflateReset(strm);
    strm->total_in = in;  strm->total_out = out;
    state->mode = TYPE;
    return Z_OK;
}

/*
   Returns true if inflate is currently at the end of a block generated by
   Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
   implementation to provide an additional safety check. PPP uses
   Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored
   block. When decompressing, PPP checks that at the end of input packet,
   inflate is waiting for these length bytes.
 */
int ZEXPORT inflateSyncPoint(strm)
z_streamp strm;
{
    struct inflate_state FAR *state;

    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state FAR *)strm->state;
    return state->mode == STORED && state->bits == 0;
}

int ZEXPORT inflateCopy(dest, source)
z_streamp dest;
z_streamp source;
{
    struct inflate_state FAR *state;
    struct inflate_state FAR *copy;
    unsigned char FAR *window;
    unsigned wsize;

    /* check input */
    if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL ||
        source->zalloc == (alloc_func)0 || source->zfree == (free_func)0)
        return Z_STREAM_ERROR;
    state = (struct inflate_state FAR *)source->state;

    /* allocate space */
    copy = (struct inflate_state FAR *)
           ZALLOC(source, 1, sizeof(struct inflate_state));
    if (copy == Z_NULL) return Z_MEM_ERROR;
    window = Z_NULL;
    if (state->window != Z_NULL) {
        window = (unsigned char FAR *)
                 ZALLOC(source, ((unsigned int)1) << state->wbits, sizeof(unsigned char));
        if (window == Z_NULL) {
            ZFREE(source, copy);
            return Z_MEM_ERROR;
        }
    }

    /* copy state */
    zmemcpy(dest, source, sizeof(z_stream));
    zmemcpy(copy, state, sizeof(struct inflate_state));
    if (state->lencode >= state->codes &&
        state->lencode <= state->codes + ENOUGH - 1) {
        copy->lencode = copy->codes + (state->lencode - state->codes);
        copy->distcode = copy->codes + (state->distcode - state->codes);
    }
    copy->next = copy->codes + (state->next - state->codes);
    if (window != Z_NULL) {
        wsize = ((unsigned int)1) << state->wbits;
        zmemcpy(window, state->window, wsize);
    }
    copy->window = window;
    dest->state = (struct internal_state FAR *)copy;
    return Z_OK;
}

#endif /* _INFLATE_C */

#ifndef _GZIO_C
#define _GZIO_C		1

typedef voidp gzFile;

#ifndef Z_BUFSIZE
#  ifdef MAXSEG_64K
#    define Z_BUFSIZE 4096 /* minimize memory usage for 16-bit DOS */
#  else
#    define Z_BUFSIZE 16384
#  endif
#endif
#ifndef Z_PRINTF_BUFSIZE
#  define Z_PRINTF_BUFSIZE 4096
#endif

#ifdef __MVS__
#  pragma map (fdopen , "\174\174FDOPEN")
   FILE *fdopen(int, const char *);
#endif

#if 0 && !_PACKAGE_ast
#ifndef STDC
extern voidp  malloc OF((uInt size));
extern void   free   OF((voidpf ptr));
#endif
#endif

#define ALLOC(size) malloc(size)
#define TRYFREE(p) {if (p) free(p);}

static int const gz_magic[2] = {0x1f, 0x8b}; /* gzip magic header */

/* gzip flag byte */
#define ASCII_FLAG   0x01 /* bit 0 set: file probably ascii text */
#define HEAD_CRC     0x02 /* bit 1 set: header CRC present */
#define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
#define ORIG_NAME    0x08 /* bit 3 set: original file name present */
#define COMMENT      0x10 /* bit 4 set: file comment present */
#define RESERVED     0xE0 /* bits 5..7: reserved */

typedef struct gz_stream {
    z_stream stream;
    int      z_err;   /* error code for last stream operation */
    int      z_eof;   /* set if end of input file */
    FILE     *file;   /* .gz file */
    Byte     *inbuf;  /* input buffer */
    Byte     *outbuf; /* output buffer */
    uLong    crc;     /* crc32 of uncompressed data */
    char     *msg;    /* error message */
    char     *path;   /* path name for debugging only */
    int      transparent; /* 1 if input file is not a .gz file */
#if _PACKAGE_ast
    int      fatal;   /* fatal stream error => all other ops fail */
    int      nocrc;   /* 1 to skip 'r' crc checks */
    int      noclose; /* 1 to skip destroy fclose */
    int      verified;/* 2-byte magic read and verified ('v') */
#endif
    char     mode;    /* 'w' or 'r' */
    z_off_t  start;   /* start of compressed data in file (header skipped) */
    z_off_t  in;      /* bytes into deflate or inflate */
    z_off_t  out;     /* bytes out of deflate or inflate */
    int      back;    /* one character push-back */
    int      last;    /* true if push-back is last character */
} gz_stream;


local gzFile gz_open      OF((const char *path, const char *mode, FILE* fp));
local int    get_byte     OF((gz_stream *s));
local void   check_header OF((gz_stream *s));
local int    destroy      OF((gz_stream *s));
local uLong  getLong      OF((gz_stream *s));

/* ===========================================================================
     Opens a gzip (.gz) file for reading or writing. The mode parameter
   is as in fopen ("rb" or "wb"). The file is given either by FILE pointer
   or path name (if fp == 0).
     gz_open returns NULL if the file could not be opened or if there was
   insufficient memory to allocate the (de)compression state; errno
   can be checked to distinguish the two cases (if errno is zero, the
   zlib error is Z_MEM_ERROR).
*/
local gzFile gz_open (path, mode, fp)
    const char *path;
    const char *mode;
    FILE       *fp;
{
    int err;
    int level = Z_DEFAULT_COMPRESSION; /* compression level */
    int strategy = Z_DEFAULT_STRATEGY; /* compression strategy */
    char *p = (char*)mode;
    gz_stream *s;
    char fmode[80]; /* copy of mode, without the compression level */
    char *m = fmode;

    if (!path || !mode) return Z_NULL;

    s = (gz_stream *)ALLOC(sizeof(gz_stream));
    if (!s) return Z_NULL;

    s->stream.zalloc = (alloc_func)0;
    s->stream.zfree = (free_func)0;
    s->stream.opaque = (voidpf)0;
    s->stream.next_in = s->inbuf = Z_NULL;
    s->stream.next_out = s->outbuf = Z_NULL;
    s->stream.avail_in = s->stream.avail_out = 0;
    s->file = NULL;
    s->z_err = Z_OK;
    s->z_eof = 0;
    s->in = 0;
    s->out = 0;
    s->back = EOF;
    s->crc = crc32(0L, Z_NULL, 0);
#if _PACKAGE_ast
    s->fatal = 0;
    s->nocrc = 0;
    s->verified = 0;
#endif
    s->msg = NULL;
    s->transparent = 0;

    s->path = (char*)ALLOC(strlen(path)+1);
    if (s->path == NULL) {
        return destroy(s), (gzFile)Z_NULL;
    }
    strcpy(s->path, path); /* do this early for debugging */

    s->mode = '\0';
    do {
        if (*p == 'r') s->mode = 'r';
        if (*p == 'w' || *p == 'a') s->mode = 'w';
        if (*p >= '0' && *p <= '9') {
            level = *p - '0';
        } else if (*p == 'f') {
          strategy = Z_FILTERED;
        } else if (*p == 'h') {
          strategy = Z_HUFFMAN_ONLY;
        } else if (*p == 'R') {
          strategy = Z_RLE;
#if _PACKAGE_ast
	} else if (*p == 'n') {
	  s->nocrc = 1;
	} else if (*p == 'o') {
	  s->noclose = 1;
	} else if (*p == 'v') {
	  s->verified = 1;
#endif
        } else {
            *m++ = *p; /* copy the mode */
        }
    } while (*p++ && m != fmode + sizeof(fmode));
    if (s->mode == '\0') return destroy(s), (gzFile)Z_NULL;

    if (s->mode == 'w') {
#ifdef NO_GZCOMPRESS
        err = Z_STREAM_ERROR;
#else
#if _PACKAGE_ast
        s->nocrc = 0;
#endif
        err = deflateInit2(&(s->stream), level,
                           Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, strategy);
        /* windowBits is passed < 0 to suppress zlib header */

        s->stream.next_out = s->outbuf = (Byte*)ALLOC(Z_BUFSIZE);
#endif
        if (err != Z_OK || s->outbuf == Z_NULL) {
            return destroy(s), (gzFile)Z_NULL;
        }
    } else {
        s->stream.next_in  = s->inbuf = (Byte*)ALLOC(Z_BUFSIZE);

        err = inflateInit2(&(s->stream), -MAX_WBITS);
        /* windowBits is passed < 0 to tell that there is no zlib header.
         * Note that in this case inflate *requires* an extra "dummy" byte
         * after the compressed stream in order to complete decompression and
         * return Z_STREAM_END. Here the gzip CRC32 ensures that 4 bytes are
         * present after the compressed stream.
         */
        if (err != Z_OK || s->inbuf == Z_NULL) {
            return destroy(s), (gzFile)Z_NULL;
        }
    }
    s->stream.avail_out = Z_BUFSIZE;

    errno = 0;

    if (!(s->file = fp) && !(s->file = F_OPEN(path, fmode))) {
        return destroy(s), (gzFile)Z_NULL;
    }
    if (s->mode == 'w') {
        /* Write a very simple .gz header:
         */
        fprintf(s->file, "%c%c%c%c%c%c%c%c%c%c", gz_magic[0], gz_magic[1],
             Z_DEFLATED, 0 /*flags*/, 0,0,0,0 /*time*/, 0 /*xflags*/, OS_CODE);
        s->start = 10L;
        /* We use 10L instead of ftell(s->file) to because ftell causes an
         * fflush on some systems. This version of the library doesn't use
         * start anyway in write mode, so this initialization is not
         * necessary.
         */
    } else {
#if _PACKAGE_ast
	sfsetbuf(s->file, (void*)s->file, SF_UNBOUND);
#endif
        check_header(s); /* skip the .gz header */
        s->start = ftell(s->file) - s->stream.avail_in;
    }

    return (gzFile)s;
}

/* ===========================================================================
     Associate a gzFile with the stdio stream fp.
*/
gzFile ZEXPORT gzfopen (fp, mode)
    FILE* fp;
    const char *mode;
{
    FILE* sp = (FILE*)fp;
    char name[20];

    if (!sp)
       return (gzFile)Z_NULL;
    sprintf(name, "<fd:%d>", fileno(sp)); /* for debugging */

    return gz_open (name, mode, sp);
}

/* ===========================================================================
     Read a byte from a gz_stream; update next_in and avail_in. Return EOF
   for end of file.
   IN assertion: the stream s has been sucessfully opened for reading.
*/
local int get_byte(s)
    gz_stream *s;
{
    if (s->z_eof) return EOF;
    if (s->stream.avail_in == 0) {
        errno = 0;
        s->stream.avail_in = (uInt)fread(s->inbuf, 1, Z_BUFSIZE, s->file);
        if (s->stream.avail_in == 0) {
            s->z_eof = 1;
            if (ferror(s->file)) s->z_err = Z_ERRNO;
            return EOF;
        }
        s->stream.next_in = s->inbuf;
    }
    s->stream.avail_in--;
    return *(s->stream.next_in)++;
}

/* ===========================================================================
      Check the gzip header of a gz_stream opened for reading. Set the stream
    mode to transparent if the gzip magic header is not present; set s->err
    to Z_DATA_ERROR if the magic header is present but the rest of the header
    is incorrect.
    IN assertion: the stream s has already been created sucessfully;
       s->stream.avail_in is zero for the first time, but may be non-zero
       for concatenated .gz files.
*/
local void check_header(s)
    gz_stream *s;
{
    int method; /* method byte */
    int flags;  /* flags byte */
    uInt len;
    int c;

#if _PACKAGE_ast
    if (!s->verified)
        for (len = 0; len < 2; len++) {
	    c = get_byte(s);
	    if (c != gz_magic[len]) {
	        if (len != 0) s->stream.avail_in++, s->stream.next_in--;
	        if (c != EOF) {
		    s->stream.avail_in++, s->stream.next_in--;
		    s->transparent = 1;
	        }
	        s->z_err = s->stream.avail_in != 0 ? Z_OK : Z_STREAM_END;
	        return;
	    }
        }
#else
    /* Assure two bytes in the buffer so we can peek ahead -- handle case
       where first byte of header is at the end of the buffer after the last
       gzip segment */
    len = s->stream.avail_in;
    if (len < 2) {
        if (len) s->inbuf[0] = s->stream.next_in[0];
        errno = 0;
        len = (uInt)fread(s->inbuf + len, 1, Z_BUFSIZE >> len, s->file);
        if (len == 0 && ferror(s->file)) s->z_err = Z_ERRNO;
        s->stream.avail_in += len;
        s->stream.next_in = s->inbuf;
        if (s->stream.avail_in < 2) {
            s->transparent = s->stream.avail_in;
            return;
        }
    }

    /* Peek ahead to check the gzip magic header */
    if (s->stream.next_in[0] != gz_magic[0] ||
        s->stream.next_in[1] != gz_magic[1]) {
        s->transparent = 1;
        return;
    }
    s->stream.avail_in -= 2;
    s->stream.next_in += 2;
#endif

    /* Check the rest of the gzip header */
    method = get_byte(s);
    flags = get_byte(s);
    if (method != Z_DEFLATED || (flags & RESERVED) != 0) {
        s->z_err = Z_DATA_ERROR;
        return;
    }

    /* Discard time, xflags and OS code: */
    for (len = 0; len < 6; len++) (void)get_byte(s);

    if ((flags & EXTRA_FIELD) != 0) { /* skip the extra field */
        len  =  (uInt)get_byte(s);
        len += ((uInt)get_byte(s))<<8;
        /* len is garbage if EOF but the loop below will quit anyway */
        while (len-- != 0 && get_byte(s) != EOF) ;
    }
    if ((flags & ORIG_NAME) != 0) { /* skip the original file name */
        while ((c = get_byte(s)) != 0 && c != EOF) ;
    }
    if ((flags & COMMENT) != 0) {   /* skip the .gz file comment */
        while ((c = get_byte(s)) != 0 && c != EOF) ;
    }
    if ((flags & HEAD_CRC) != 0) {  /* skip the header crc */
        for (len = 0; len < 2; len++) (void)get_byte(s);
    }
    s->z_err = s->z_eof ? Z_DATA_ERROR : Z_OK;
}

 /* ===========================================================================
 * Cleanup then free the given gz_stream. Return a zlib error code.
   Try freeing in the reverse order of allocations.
 */
local int destroy (s)
    gz_stream *s;
{
    int err = Z_OK;

    if (!s) return Z_STREAM_ERROR;

    TRYFREE(s->msg);

    if (s->stream.state != NULL) {
        if (s->mode == 'w') {
#ifdef NO_GZCOMPRESS
            err = Z_STREAM_ERROR;
#else
            err = deflateEnd(&(s->stream));
#endif
        } else if (s->mode == 'r') {
            err = inflateEnd(&(s->stream));
        }
    }
#if _PACKAGE_ast
    if (s->file != NULL && (s->noclose ? (s->mode == 'r' ? 0 : fflush(s->file)) : fclose(s->file))) {
#else
    if (s->file != NULL && fclose(s->file)) {
#endif
#ifdef ESPIPE
        if (errno != ESPIPE) /* fclose is broken for pipes in HP/UX */
#endif
            err = Z_ERRNO;
    }
    if (s->z_err < 0) err = s->z_err;

    TRYFREE(s->inbuf);
    TRYFREE(s->outbuf);
    TRYFREE(s->path);
    TRYFREE(s);
    return err;
}

/* ===========================================================================
     Reads the given number of uncompressed bytes from the compressed file.
   gzread returns the number of bytes actually read (0 for end of file).
*/
int ZEXPORT gzread (file, buf, len)
    gzFile file;
    voidp buf;
    unsigned len;
{
    gz_stream *s = (gz_stream*)file;
    Bytef *start = (Bytef*)buf; /* starting point for crc computation */
    Byte  *next_out; /* == stream.next_out but not forced far (for MSDOS) */

    if (s == NULL || s->mode != 'r') return Z_STREAM_ERROR;

    if (s->z_err == Z_DATA_ERROR || s->z_err == Z_ERRNO) return -1;
    if (s->z_err == Z_STREAM_END) return 0;  /* EOF */

    next_out = (Byte*)buf;
    s->stream.next_out = (Bytef*)buf;
    s->stream.avail_out = len;

    if (s->stream.avail_out && s->back != EOF) {
        *next_out++ = s->back;
        s->stream.next_out++;
        s->stream.avail_out--;
        s->back = EOF;
        s->out++;
        start++;
        if (s->last) {
            s->z_err = Z_STREAM_END;
            return 1;
        }
    }

    while (s->stream.avail_out != 0) {

        if (s->transparent) {
            /* Copy first the lookahead bytes: */
            uInt n = s->stream.avail_in;
            if (n > s->stream.avail_out) n = s->stream.avail_out;
            if (n > 0) {
                zmemcpy(s->stream.next_out, s->stream.next_in, n);
                next_out += n;
                s->stream.next_out = next_out;
                s->stream.next_in   += n;
                s->stream.avail_out -= n;
                s->stream.avail_in  -= n;
            }
            if (s->stream.avail_out > 0) {
                s->stream.avail_out -=
                    (uInt)fread(next_out, 1, s->stream.avail_out, s->file);
            }
            len -= s->stream.avail_out;
            s->in  += len;
            s->out += len;
            if (len == 0) s->z_eof = 1;
            return (int)len;
        }
        if (s->stream.avail_in == 0 && !s->z_eof) {

            errno = 0;
            s->stream.avail_in = (uInt)fread(s->inbuf, 1, Z_BUFSIZE, s->file);
            if (s->stream.avail_in == 0) {
                s->z_eof = 1;
                if (ferror(s->file)) {
                    s->z_err = Z_ERRNO;
                    break;
                }
            }
            s->stream.next_in = s->inbuf;
        }
        s->in += s->stream.avail_in;
        s->out += s->stream.avail_out;
        s->z_err = inflate(&(s->stream), Z_NO_FLUSH);
        s->in -= s->stream.avail_in;
        s->out -= s->stream.avail_out;

        if (s->z_err == Z_STREAM_END) {
            /* Check CRC and original size */
#if _PACKAGE_ast
	    if (!s->nocrc)
#endif
            s->crc = crc32(s->crc, start, (uInt)(s->stream.next_out - start));
            start = s->stream.next_out;

#if _PACKAGE_ast
	    if (getLong(s) != s->crc && !s->nocrc) {
#else
	    if (getLong(s) != s->crc) {
#endif
                s->z_err = Z_DATA_ERROR;
            } else {
                (void)getLong(s);
                /* The uncompressed length returned by above getlong() may be
                 * different from s->out in case of concatenated .gz files.
                 * Check for such files:
                 */
                check_header(s);
                if (s->z_err == Z_OK) {
                    inflateReset(&(s->stream));
#if _PACKAGE_ast
                    if (!s->nocrc)
#endif
                    s->crc = crc32(0L, Z_NULL, 0);
#if _PACKAGE_ast
                    else
			s->z_err = Z_STREAM_END;
#endif
                }
            }
        }
        if (s->z_err != Z_OK || s->z_eof) break;
    }
#if _PACKAGE_ast
    if (!s->nocrc)
#endif
    s->crc = crc32(s->crc, start, (uInt)(s->stream.next_out - start));

    if (len == s->stream.avail_out &&
        (s->z_err == Z_DATA_ERROR || s->z_err == Z_ERRNO))
        return -1;
    return (int)(len - s->stream.avail_out);
}

/* ===========================================================================
   Reads a long in LSB order from the given gz_stream. Sets z_err in case
   of error.
*/
local uLong getLong (s)
    gz_stream *s;
{
    uLong x = (uLong)get_byte(s);
    int c;

    x += ((uLong)get_byte(s))<<8;
    x += ((uLong)get_byte(s))<<16;
    c = get_byte(s);
    if (c == EOF) s->z_err = Z_DATA_ERROR;
    x += ((uLong)c)<<24;
    return x;
}

#endif /* _GZIO_C */

#endif /* _GUNZIP_H */

#undef	local

#ifndef _RATZ_C
#define _RATZ_C		1

#include <sys/stat.h>

#ifndef S_IRUSR
#define S_IRUSR		0400
#endif
#ifndef S_IWUSR
#define S_IWUSR		0200
#endif
#ifndef S_IXUSR
#define S_IXUSR		0100
#endif
#ifndef S_IRGRP
#define S_IRGRP		0040
#endif
#ifndef S_IWGRP
#define S_IWGRP		0020
#endif
#ifndef S_IXGRP
#define S_IXGRP		0010
#endif
#ifndef S_IROTH
#define S_IROTH		0004
#endif
#ifndef S_IWOTH
#define S_IWOTH		0002
#endif
#ifndef S_IXOTH
#define S_IXOTH		0001
#endif

/*
 * Standard Archive Format
 * USTAR - Uniform Standard Tape ARchive
 */

#define TBLOCK		512
#define NAMSIZ		100
#define PFXSIZ		155

#define TMODLEN		8
#define TUIDLEN		8
#define TGIDLEN		8
#define TSIZLEN		12
#define TMTMLEN		12
#define TCKSLEN		8

#define TMAGIC		"ustar"		/* ustar and a null		*/
#define TMAGLEN		6
#define TVERSION	"00"		/* 00 and no null		*/
#define TVERSLEN	2
#define TUNMLEN		32
#define TGNMLEN		32
#define TDEVLEN		8
#define TPADLEN		12

/*
 * values used in typeflag field
 */

#define REGTYPE		'0'		/* regular file			*/
#define AREGTYPE	0		/* alternate REGTYPE		*/
#define LNKTYPE		'1'		/* hard link			*/
#define SYMTYPE		'2'		/* soft link			*/
#define CHRTYPE		'3'		/* character special		*/
#define BLKTYPE		'4'		/* block special		*/
#define DIRTYPE		'5'		/* directory			*/
#define FIFOTYPE	'6'		/* FIFO special			*/
#define CONTTYPE	'7'		/* reserved			*/
#define SOKTYPE		'8'		/* socket -- reserved		*/
#define VERTYPE		'V'		/* version -- reserved		*/
#define EXTTYPE		'x'		/* extended header -- reserved	*/

/*
 * bits used in mode field
 */

#define TSUID		04000		/* set uid on exec		*/
#define TSGID		02000		/* set gid on exec		*/
#define TSVTX		01000		/* sticky bit -- reserved	*/

/*
 * file permissions
 */

#define TUREAD		00400		/* read by owner		*/
#define TUWRITE		00200		/* write by owner		*/
#define TUEXEC		00100		/* execute by owner		*/
#define TGREAD		00040		/* read by group		*/
#define TGWRITE		00020		/* execute by group		*/
#define TGEXEC		00010		/* write by group		*/
#define TOREAD		00004		/* read by other		*/
#define TOWRITE		00002		/* write by other		*/
#define TOEXEC		00001		/* execute by other		*/

#define TAR_SUMASK	((1L<<(TCKSLEN-1)*3)-1)

typedef struct
{
	char		name[NAMSIZ];
	char		mode[TMODLEN];
	char		uid[TUIDLEN];
	char		gid[TGIDLEN];
	char		size[TSIZLEN];
	char		mtime[TMTMLEN];
	char		chksum[TCKSLEN];
	char		typeflag;
	char		linkname[NAMSIZ];
	char		magic[TMAGLEN];
	char		version[TVERSLEN];
	char		uname[TUNMLEN];
	char		gname[TGNMLEN];
	char		devmajor[TDEVLEN];
	char		devminor[TDEVLEN];
	char		prefix[PFXSIZ];
	char		pad[TPADLEN];
} Header_t;

static struct
{
	char*		id;
	unsigned long	blocks;
	unsigned long	files;
} state;

#if !_PACKAGE_ast

static void
usage()
{
	fprintf(stderr, "Usage: %s [-clmntvV] < input.tgz\n", state.id);
	exit(2);
}

#endif

/*
 * the X/Open dd EBCDIC table
 */

static const unsigned char a2e[] =
{
	0000,0001,0002,0003,0067,0055,0056,0057,
	0026,0005,0045,0013,0014,0015,0016,0017,
	0020,0021,0022,0023,0074,0075,0062,0046,
	0030,0031,0077,0047,0034,0035,0036,0037,
	0100,0132,0177,0173,0133,0154,0120,0175,
	0115,0135,0134,0116,0153,0140,0113,0141,
	0360,0361,0362,0363,0364,0365,0366,0367,
	0370,0371,0172,0136,0114,0176,0156,0157,
	0174,0301,0302,0303,0304,0305,0306,0307,
	0310,0311,0321,0322,0323,0324,0325,0326,
	0327,0330,0331,0342,0343,0344,0345,0346,
	0347,0350,0351,0255,0340,0275,0232,0155,
	0171,0201,0202,0203,0204,0205,0206,0207,
	0210,0211,0221,0222,0223,0224,0225,0226,
	0227,0230,0231,0242,0243,0244,0245,0246,
	0247,0250,0251,0300,0117,0320,0137,0007,
	0040,0041,0042,0043,0044,0025,0006,0027,
	0050,0051,0052,0053,0054,0011,0012,0033,
	0060,0061,0032,0063,0064,0065,0066,0010,
	0070,0071,0072,0073,0004,0024,0076,0341,
	0101,0102,0103,0104,0105,0106,0107,0110,
	0111,0121,0122,0123,0124,0125,0126,0127,
	0130,0131,0142,0143,0144,0145,0146,0147,
	0150,0151,0160,0161,0162,0163,0164,0165,
	0166,0167,0170,0200,0212,0213,0214,0215,
	0216,0217,0220,0152,0233,0234,0235,0236,
	0237,0240,0252,0253,0254,0112,0256,0257,
	0260,0261,0262,0263,0264,0265,0266,0267,
	0270,0271,0272,0273,0274,0241,0276,0277,
	0312,0313,0314,0315,0316,0317,0332,0333,
	0334,0335,0336,0337,0352,0353,0354,0355,
	0356,0357,0372,0373,0374,0375,0376,0377,
};

/*
 * the X/Open dd IBM table
 */

static const unsigned char a2i[] =
{
	0000,0001,0002,0003,0067,0055,0056,0057,
	0026,0005,0045,0013,0014,0015,0016,0017,
	0020,0021,0022,0023,0074,0075,0062,0046,
	0030,0031,0077,0047,0034,0035,0036,0037,
	0100,0132,0177,0173,0133,0154,0120,0175,
	0115,0135,0134,0116,0153,0140,0113,0141,
	0360,0361,0362,0363,0364,0365,0366,0367,
	0370,0371,0172,0136,0114,0176,0156,0157,
	0174,0301,0302,0303,0304,0305,0306,0307,
	0310,0311,0321,0322,0323,0324,0325,0326,
	0327,0330,0331,0342,0343,0344,0345,0346,
	0347,0350,0351,0255,0340,0275,0137,0155,
	0171,0201,0202,0203,0204,0205,0206,0207,
	0210,0211,0221,0222,0223,0224,0225,0226,
	0227,0230,0231,0242,0243,0244,0245,0246,
	0247,0250,0251,0300,0117,0320,0241,0007,
	0040,0041,0042,0043,0044,0025,0006,0027,
	0050,0051,0052,0053,0054,0011,0012,0033,
	0060,0061,0032,0063,0064,0065,0066,0010,
	0070,0071,0072,0073,0004,0024,0076,0341,
	0101,0102,0103,0104,0105,0106,0107,0110,
	0111,0121,0122,0123,0124,0125,0126,0127,
	0130,0131,0142,0143,0144,0145,0146,0147,
	0150,0151,0160,0161,0162,0163,0164,0165,
	0166,0167,0170,0200,0212,0213,0214,0215,
	0216,0217,0220,0232,0233,0234,0235,0236,
	0237,0240,0252,0253,0254,0255,0256,0257,
	0260,0261,0262,0263,0264,0265,0266,0267,
	0270,0271,0272,0273,0274,0275,0276,0277,
	0312,0313,0314,0315,0316,0317,0332,0333,
	0334,0335,0336,0337,0352,0353,0354,0355,
	0356,0357,0372,0373,0374,0375,0376,0377,
};

/*
 * the mvs OpenEdition EBCDIC table
 */

static const unsigned char a2o[] =
{
	0000,0001,0002,0003,0067,0055,0056,0057,
	0026,0005,0025,0013,0014,0015,0016,0017,
	0020,0021,0022,0023,0074,0075,0062,0046,
	0030,0031,0077,0047,0034,0035,0036,0037,
	0100,0132,0177,0173,0133,0154,0120,0175,
	0115,0135,0134,0116,0153,0140,0113,0141,
	0360,0361,0362,0363,0364,0365,0366,0367,
	0370,0371,0172,0136,0114,0176,0156,0157,
	0174,0301,0302,0303,0304,0305,0306,0307,
	0310,0311,0321,0322,0323,0324,0325,0326,
	0327,0330,0331,0342,0343,0344,0345,0346,
	0347,0350,0351,0255,0340,0275,0137,0155,
	0171,0201,0202,0203,0204,0205,0206,0207,
	0210,0211,0221,0222,0223,0224,0225,0226,
	0227,0230,0231,0242,0243,0244,0245,0246,
	0247,0250,0251,0300,0117,0320,0241,0007,
	0040,0041,0042,0043,0044,0045,0006,0027,
	0050,0051,0052,0053,0054,0011,0012,0033,
	0060,0061,0032,0063,0064,0065,0066,0010,
	0070,0071,0072,0073,0004,0024,0076,0377,
	0101,0252,0112,0261,0237,0262,0152,0265,
	0273,0264,0232,0212,0260,0312,0257,0274,
	0220,0217,0352,0372,0276,0240,0266,0263,
	0235,0332,0233,0213,0267,0270,0271,0253,
	0144,0145,0142,0146,0143,0147,0236,0150,
	0164,0161,0162,0163,0170,0165,0166,0167,
	0254,0151,0355,0356,0353,0357,0354,0277,
	0200,0375,0376,0373,0374,0272,0256,0131,
	0104,0105,0102,0106,0103,0107,0234,0110,
	0124,0121,0122,0123,0130,0125,0126,0127,
	0214,0111,0315,0316,0313,0317,0314,0341,
	0160,0335,0336,0333,0334,0215,0216,0337,
};

/*
 * ascii text vs. control
 */

static const unsigned char ascii_text[] =
{
	0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,
	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
};

static int
block(fp, gz, buf)
FILE*	fp;
gzFile	gz;
char*	buf;
{
	int	r;

	if (gz)
		r = gzread(gz, buf, sizeof(Header_t)) == sizeof(Header_t);
	else
		r = fread(buf, sizeof(Header_t), 1, fp) == 1;
	if (r)
		state.blocks++;
	return r;
}

static int
skip(fp, gz, buf, n)
FILE*		fp;
gzFile		gz;
char*		buf;
unsigned long	n;
{
	while (n > 0)
	{
		if (!block(fp, gz, buf))
		{
			fprintf(stderr, "%s: unexpected EOF\n", state.id);
			return 1;
		}
		if (n <= sizeof(Header_t))
			break;
		n -= sizeof(Header_t);
	}
	return 0;
}

static unsigned long
number(s)
register char*	s;
{
	unsigned long	n = 0;

	while (*s == ' ')
		s++;
	while (*s >= '0' && *s <= '7')
		n = (n << 3) + (*s++ - '0');
	return n;
}

#if defined(_SEAR_EXEC) || defined(_SEAR_SEEK)

#ifndef PATH_MAX
#define PATH_MAX	256
#endif

#define EXIT(n)	return(sear_exec((char*)0,(char**)0,(char*)0),(n))

static int	sear_stdin;
static char*	sear_tmp;
static char	sear_buf[PATH_MAX];

static int
sear_seek(off_t offset, int tmp)
{
	int	n;
	char	cmd[PATH_MAX];

	GetModuleFileName(NULL, cmd, sizeof(cmd));
	sear_stdin = dup(0);
	close(0);
	if (open(cmd, O_BINARY|O_RDONLY) || lseek(0, offset, 0) != offset)
	{
		fprintf(stderr, "%s: %s: cannot seek to data offset\n", state.id, cmd);
		return -1;
	}
	if (tmp)
	{
		if ((n = GetTempPath(sizeof(cmd), cmd)) <= 0 || n > sizeof(cmd))
		{
			fprintf(stderr, "%s: cannot determine temporary directory path\n", state.id);
			return -1;
		}
		if (!GetTempFileName(cmd, "SEA", 0, sear_buf))
		{
			fprintf(stderr, "%s: cannot determine temporary file path\n", state.id);
			return -1;
		}
		sear_tmp = sear_buf;
		if (!DeleteFile(sear_tmp))
		{
			fprintf(stderr, "%s: %s: cannot initialize temporary directory\n", state.id, sear_tmp);
			return -1;
		}
		if (!CreateDirectory(sear_tmp, NULL))
		{
			fprintf(stderr, "%s: %s: cannot create temporary directory\n", state.id, sear_tmp);
			return -1;
		}
		if (!SetCurrentDirectory(sear_tmp))
		{
			fprintf(stderr, "%s: %s: cannot cd to temporary directory\n", state.id, sear_tmp);
			return -1;
		}
	}
	return 0;
}

/*
 * remove dir and its subdirs
 */

static void
sear_rm_r(char* dir)
{
	WIN32_FIND_DATA	info;
	HANDLE		hp;

	if (!SetCurrentDirectory(dir))
		return;
	if ((hp = FindFirstFile("*.*", &info)) != INVALID_HANDLE_VALUE)
		do
		{
			if (!(info.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
			{
				if (info.dwFileAttributes & FILE_ATTRIBUTE_READONLY)
					SetFileAttributes(info.cFileName, info.dwFileAttributes & ~FILE_ATTRIBUTE_READONLY);
				DeleteFile(info.cFileName);
			}
			else if (info.cFileName[0] != '.' || info.cFileName[1] != 0 && (info.cFileName[1] != '.' || info.cFileName[2] != 0))
				sear_rm_r(info.cFileName);
		} while(FindNextFile(hp, &info));
	FindClose(hp);
	if (SetCurrentDirectory(".."))
		RemoveDirectory(dir);
}

/*
 * system(3) without PATH search that should work on all windows variants
 */

static int
sear_system(const char* command, int nowindow)
{
	PROCESS_INFORMATION	pinfo;
	STARTUPINFO		sinfo;
	char*			cp;
	char			path[PATH_MAX];
	int			n = *command == '"';
	DWORD			flags = NORMAL_PRIORITY_CLASS;

	strncpy(path, &command[n], PATH_MAX - 4);
	n = n ? '"' : ' ';
	for (cp = path; *cp; *cp++)
		if (*cp == n)
			break;
	*cp = 0;
	if (GetFileAttributes(path) == 0xffffffff && GetLastError() == ERROR_FILE_NOT_FOUND)
		strcpy(cp, ".exe");
	ZeroMemory(&sinfo, sizeof(sinfo));
	if (nowindow)
		flags |= CREATE_NO_WINDOW;
	if (!CreateProcess(path, (char*)command, 0, 0, TRUE, flags, NULL, NULL, &sinfo, &pinfo))
		n = GetLastError() == ERROR_FILE_NOT_FOUND ? 127 : 126;
	else
	{
		CloseHandle(pinfo.hThread);
		WaitForSingleObject(pinfo.hProcess, INFINITE);
		if (!GetExitCodeProcess(pinfo.hProcess, &n))
			n = 1;
		CloseHandle(pinfo.hProcess);
		Sleep(2 * 1000);
	}
	return n;
}

/*
 * copy t to f but no farther than e
 * next t returned
 */

static char*
copy(char* t, const char* f, char* e)
{
	while (t < e && *f)
		*t++ = *f++;
	return t;
}

/*
 * execute cmd, chdir .., and remove sear_tmp
 */

static int
sear_exec(const char* cmd, char* const* arg, char* operands)
{
	const char*	a;
	char*		b;
	char*		e;
	int		r;
	int		sh;
	int		nowindow;
	char		buf[1024];

	fflush(stdout);
	fflush(stderr);
	if (sear_tmp)
	{
		close(0);
		dup(sear_stdin);
		close(sear_stdin);
		nowindow = 0;
		if (cmd)
		{
			if (arg)
				for (r = 0; arg[r]; r++)
					if (!strcmp(arg[r], "remote"))
					{
						nowindow = 1;
						break;
					}
			sh = 0;
			for (a = cmd; *a && *a != ' '; a++)
				if (a[0] == '.' && a[1] == 's' && a[2] == 'h' && (!a[3] || a[3] == ' '))
				{
					sh = 1;
					break;
				}
			b = buf;
			e = buf + sizeof(buf) - 1;
			if (sh || arg)
			{
				if (sh)
				{
					b = copy(b, "ksh.exe ", e);
					if (*cmd && *cmd != '/')
						b = copy(b, "./", e);
				}
				b = copy(b, cmd, e);
				while (a = *arg++)
				{
					if ((e - b) < 3)
						break;
					b = copy(b, " \"", e);
					b = copy(b, a, e);
					b = copy(b, "\"", e);
				}
			}
			if (operands)
			{
				if (b == buf)
					b = copy(b, cmd, e);
				b = copy(b, " -- ", e);
				b = copy(b, operands, e);
			}
			if (b > buf)
			{
				*b = 0;
				cmd = (const char*)buf;
			}
		}
		r = cmd ? sear_system(cmd, nowindow) : 1;
		sear_rm_r(sear_tmp);
	}
	else
		r = cmd ? 0 : 1;
	return r;
}

#else

#define EXIT(n)	return(n)

#endif

int
main(argc, argv)
int	argc;
char**	argv;
{
	register int		c;
	register char*		s;
	register char*		t;
	register char*		e;
	unsigned long		n;
	unsigned long		m;
	const unsigned char*	a2x;
	int			clear;
	int			list;
	int			local;
	int			meter;
	int			unzip;
	int			verbose;
	unsigned int		mode;
	unsigned long		total;
	off_t			pos;
	gzFile			gz;
	FILE*			fp;
	Header_t		header;
	unsigned char		num[4];
	char			path[sizeof(header.prefix) + sizeof(header.name) + 4];
	char			buf[sizeof(header)];
#if defined(_SEAR_OPTS)
	char*			opts[4];
#endif

#if defined(_SEAR_EXEC) || defined(_SEAR_SEEK)
	int			install = 1;
#endif

	setmode(0, O_BINARY);
	setmode(1, O_BINARY);
	clear = 0;
	list = 0;
	local = 0;
	meter = 0;
	unzip = 0;
	verbose = 0;
	if (s = *argv)
	{
		t = s;
		while (*s)
			if (*s++ == '/')
				t = s;
		if (!strcmp(t, "gunzip"))
			unzip = 1;
		state.id = t;
	}
	else
		state.id = "ratz";
	switch ('~')
	{
	case 0241:
		switch ('\n')
		{
		case 0025:
			a2x = a2o;
			break;
		default:
			a2x = a2e;
			break;
		}
		break;
	case 0137:
		a2x = a2i;
		break;
	default:
		a2x = 0;
		break;
	}
#if defined(_SEAR_OPTS)
	opts[0] = argv[0];
	opts[1] = _SEAR_OPTS;
	opts[2] = argv[1];
	opts[3] = 0;
	argv = opts;
#endif
#if _PACKAGE_ast
	error_info.id = state.id;
	for (;;)
	{
		switch (optget(argv, usage))
		{
		case 'c':
			unzip = 1;
			continue;
#if defined(_SEAR_EXEC) || defined(_SEAR_SEEK)
		case 'i':
			install = 0;
			continue;
#endif
		case 'l':
			local = 1;
			continue;
		case 'm':
			meter = 1;
			continue;
		case 'n':
			a2x = 0;
			continue;
		case 't':
			list = 1;
			continue;
		case 'v':
			verbose = 1;
			continue;
		case 'V':
			sfprintf(sfstdout, "%s\n", id + 10);
			return 0;
		case '?':
			error(ERROR_USAGE|4, "%s", opt_info.arg);
			continue;
		case ':':
			error(2, "%s", opt_info.arg);
			continue;
		}
		break;
	}
	if (error_info.errors)
		error(ERROR_USAGE|4, "%s", optusage(NiL));
	argv += opt_info.index;
#else
	while ((s = *++argv) && *s == '-' && *(s + 1))
	{
		if (*(s + 1) == '-')
		{
			if (!*(s + 2))
			{
				argv++;
				break;
			}
			usage();
			break;
		}
		for (;;)
		{
			switch (c = *++s)
			{
			case 0:
				break;
			case 'c':
				unzip = 1;
				continue;
#if defined(_SEAR_EXEC) || defined(_SEAR_SEEK)
			case 'i':
				install = 0;
				continue;
#endif
			case 'l':
				local = 1;
				continue;
			case 'm':
				meter = 1;
				continue;
			case 'n':
				a2x = 0;
				continue;
			case 't':
				list = 1;
				continue;
			case 'v':
				verbose = 1;
				continue;
			case 'V':
				fprintf(stdout, "%s\n", id + 10);
				return 0;
			default:
				fprintf(stderr, "%s: -%c: unknown option\n", state.id, c);
				/*FALLTHROUGH*/
			case '?':
				usage();
				break;
			}
			break;
		}
	}
#endif

#if defined(_SEAR_SEEK)
	if (sear_seek((off_t)_SEAR_SEEK, install && !list))
	{
		Sleep(2 * 1000);
		return 1;
	}
#endif

	/*
	 * commit on the first gzip magic char
	 */

	if ((c = getchar()) == EOF)
		EXIT(0);
	ungetc(c, stdin);
	if (c != gz_magic[0])
		gz = 0;
	else if (!(gz = gzfopen(stdin, FOPEN_READ)))
	{
		fprintf(stderr, "%s: gunzip open error\n", state.id);
		EXIT(1);
	}
	if (unzip)
	{
		if (!gz)
		{
			fprintf(stderr, "%s: not a gzip file\n", state.id);
			EXIT(1);
		}
		while ((c = gzread(gz, buf, sizeof(buf))) > 0)
			if (fwrite(buf, c, 1, stdout) != 1)
			{
				fprintf(stderr, "%s: write error\n", state.id);
				EXIT(1);
			}
		if (c < 0)
		{
			fprintf(stderr, "%s: read error\n", state.id);
			EXIT(1);
		}
		if (fflush(stdout))
		{
			fprintf(stderr, "%s: flush error\n", state.id);
			EXIT(1);
		}
		EXIT(0);
	}
	if (meter)
	{
		if ((pos = lseek(0, (off_t)0, SEEK_CUR)) < 0)
			meter = 0;
		else
		{
			if (lseek(0, (off_t)(-4), SEEK_END) < 0 || read(0, num, 4) != 4)
				meter = 0;
			else if (!(total = ((num[0]|(num[1]<<8)|(num[2]<<16)|(num[3]<<24)) + sizeof(Header_t) - 1) / sizeof(Header_t)))
				total = 1;
			lseek(0, pos, SEEK_SET);
		}
	}

	/*
	 * loop on all the header blocks
	 */

	while (block(stdin, gz, (char*)&header))
	{
		/*
		 * last 2 blocks are NUL
		 */

		if (!*header.name)
			break;

		/*
		 * verify the checksum
		 */

		s = header.chksum;
		e = header.chksum + sizeof(header.chksum);
		if (a2x)
		{
			for (; s < e; s++)
				*s = a2x[*(unsigned char*)s];
			s = header.chksum;
		}
		n = number(s) & TAR_SUMASK;
		while (s < e)
			*s++ = 040;
		m = 0;
		s = (char*)&header;
		e = (char*)&header + sizeof(header);
		while (s < e)
			m += *(unsigned char*)s++;
		m &= TAR_SUMASK;
		if (m != n)
		{
			if (state.files)
				fprintf(stderr, "%s: archive corrupted\n", state.id);
			else
				fprintf(stderr, "%s: not a tar archive\n", state.id);
			fprintf(stderr, "check sum %lu != %lu\n", m, n);
			EXIT(1);
		}

		/*
		 * convert to the native charset
		 */

		if (a2x)
			for (e = (s = (char*)&header) + sizeof(header); s < e; s++)
				*s = a2x[*(unsigned char*)s];

		/*
		 * get the pathname, type and size
		 */

		state.files++;
		t = path;
		if (!strncmp(header.magic, TMAGIC, sizeof(header.magic)) && *header.prefix)
		{
			s = header.prefix;
			e = header.prefix + sizeof(header.prefix);
			while (s < e && (c = *s++))
				*t++ = c;
			*t++ = '/';
		}
		s = header.name;
		e = header.name + sizeof(header.name);
		while (s < e && (c = *s++))
			*t++ = c;
		*t = 0;

		/*
		 * verify the dir prefix
		 */

		t = 0;
		s = path;
		while (*s)
			if (*s++ == '/')
				t = s;
		if (t)
		{
			*--t = 0;
			if (!list && access(path, 0))
			{
				s = path;
				do
				{
					if (!(c = *s) || c == '/')
					{
						*s = 0;
						if (access(path, 0) && mkdir(path, S_IRUSR|S_IWUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH))
						{
							fprintf(stderr, "%s: %s: cannot create directory\n", state.id, path);
							EXIT(1);
						}
						*s = c;
					}
				} while (*s++);
			}
			if (*(t + 1))
				*t = '/';
			else
				header.typeflag = DIRTYPE;
		}

		/*
		 * check for non-local paths
		 */

		if (local && (path[0] == '/' || path[0] == '.' && path[1] == '.' && (!path[2] || path[2] == '/')))
		{
			fprintf(stderr, "%s: %s: non-local path rejected", state.id, path);
			if ((header.typeflag == REGTYPE || header.typeflag == AREGTYPE) && (n = number(header.size)))
				while (n > 0)
				{
					if (!block(stdin, gz, buf))
					{
						fprintf(stderr, "%s: unexpected EOF\n", state.id);
						EXIT(1);
					}
					if (n <= sizeof(header))
						break;
					n -= sizeof(header);
				}
			continue;
		}

		/*
		 * create and grab the data
		 */

		n = number(header.mode);
		mode = 0;
		if (n & TUREAD)
			mode |= S_IRUSR;
		if (n & TUWRITE)
			mode |= S_IWUSR;
		if (n & TUEXEC)
			mode |= S_IXUSR;
		if (n & TGREAD)
			mode |= S_IRGRP;
		if (n & TGWRITE)
			mode |= S_IWGRP;
		if (n & TGEXEC)
			mode |= S_IXGRP;
		if (n & TOREAD)
			mode |= S_IROTH;
		if (n & TOWRITE)
			mode |= S_IWOTH;
		if (n & TOEXEC)
			mode |= S_IXOTH;
		if (list || meter)
		{
			if (meter)
			{
				int	i;
				int	j;
				int	k;
				int	n;
				int	p;
				char	bar[METER_parts + 1];

				for (s = path; *s; s++)
					if (s[0] == ' ' && s[1] == '-' && s[2] == '-' && s[3] == ' ')
						break;
				if (*s)
				{
					if (clear)
					{
						fprintf(stderr, "%*s", clear, "\r");
						clear = 0;
					}
					fprintf(stderr, "\n%s\n\n", path);
				}
				else
				{
					n = strlen(s = path);
					p = (state.blocks * 100) / total;
					if (n > (METER_width - METER_parts - 1))
					{
						s += n - (METER_width - METER_parts - 1);
						n = METER_width - METER_parts - 1;
					}
					j = n + METER_parts + 2;
					if (!clear)
						clear = j + 5;
					if ((k = clear - j - 5) < 0)
						k = 0;
					if ((i = (p / (100 / METER_parts))) >= sizeof(bar))
						i = sizeof(bar) - 1;
					n = 0;
					while (n < i)
						bar[n++] = '*';
					while (n < sizeof(bar) - 1)
						bar[n++] = ' ';
					bar[n] = 0;
					clear = fprintf(stderr, "%02d%% |%s| %s%*s", p, bar, s, k, "\r");
				}
			}
			else
			{
				if (verbose)
				{
					switch (header.typeflag)
					{
					case REGTYPE:
					case AREGTYPE:
						c = '-';
						break;
					case DIRTYPE:
						c = 'd';
						break;
					case LNKTYPE:
						c = 'h';
						break;
					case SYMTYPE:
						c = 'l';
						break;
					default:
						c = '?';
						break;
					}
					printf("%c", c);
					m = 0400; 
					while (m)
					{
						printf("%c", (n & m) ? 'r' : '-');
						m >>= 1;
						printf("%c", (n & m) ? 'w' : '-');
						m >>= 1;
						printf("%c", (n & m) ? 'x' : '-');
						m >>= 1;
					}
					printf(" %10lu ", number(header.size));
				}
				switch (header.typeflag)
				{
				case LNKTYPE:
					printf("%s == %s\n", path, header.linkname);
					break;
				case SYMTYPE:
					printf("%s => %s\n", path, header.linkname);
					break;
				default:
					printf("%s\n", path);
					break;
				}
			}
			if (list)
			{
				if (skip(stdin, gz, buf, number(header.size)))
					EXIT(1);
				continue;
			}
		}
		else if (verbose)
			printf("%s\n", path);
		switch (header.typeflag)
		{
		case REGTYPE:
		case AREGTYPE:
			while (!(fp = fopen(path, FOPEN_WRITE)))
				if (unlink(path))
				{
					fprintf(stderr, "%s: warning: %s: cannot create file\n", state.id, path);
					break;
				}
			n = number(header.size);
			c = a2x ? 0 : -1;
			while (n > 0)
			{
				if (!block(stdin, gz, buf))
				{
					fprintf(stderr, "%s: unexpected EOF\n", state.id);
					EXIT(1);
				}
				switch (c)
				{
				case 0:
					if ((m = n) < 4)
					{
						for (e = (s = buf) + m; s < e; s++)
							if (a2x[*(unsigned char*)s] != '\n')
								break;
					}
					else
					{
						if (m > 256)
							m = 256;
						for (e = (s = buf) + m; s < e; s++)
							if (!ascii_text[*(unsigned char*)s])
								break;
					}
					if (s < e)
					{
						c = -1;
						break;
					}
					c = 1;
					/*FALLTHROUGH*/
				case 1:
					for (e = (s = buf) + sizeof(header); s < e; s++)
						*s = a2x[*(unsigned char*)s];
					break;
				}
				if (fp && fwrite(buf, n > sizeof(header) ? sizeof(header) : n, 1, fp) != 1)
				{
					fprintf(stderr, "%s: %s: write error\n", state.id, path);
					EXIT(1);
				}
				if (n <= sizeof(header))
					break;
				n -= sizeof(header);
			}
			if (fp && fclose(fp))
			{
				fprintf(stderr, "%s: %s: write error\n", state.id, path);
				EXIT(1);
			}
			break;
		case DIRTYPE:
			if (access(path, 0) && mkdir(path, S_IRUSR|S_IWUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH))
			{
				fprintf(stderr, "%s: %s: cannot create directory\n", state.id, path);
				EXIT(1);
			}
			break;
		case SYMTYPE:
#if defined(S_IFLNK) || defined(S_ISLNK)
			while (symlink(header.linkname, path))
				if (unlink(path))
				{
					fprintf(stderr, "%s: %s: cannot symlink to %s\n", state.id, path, header.linkname);
					EXIT(1);
				}
			continue;
#endif
#if !_WIN32 || _WINIX
		case LNKTYPE:
			while (link(header.linkname, path))
				if (unlink(path))
				{
					fprintf(stderr, "%s: %s: cannot link to %s\n", state.id, path, header.linkname);
					EXIT(1);
				}
			continue;
#endif
		default:
			fprintf(stderr, "%s: %s: file type %c ignored\n", state.id, path, header.typeflag);
			if (skip(stdin, gz, buf, number(header.size)))
				EXIT(1);
			continue;
		}
		if (chmod(path, mode))
			fprintf(stderr, "%s: %s: cannot change mode to %03o\n", state.id, path, mode);
	}
	if (clear)
		fprintf(stderr, "%*s", clear, "\r");
	if (!state.files)
		fprintf(stderr, "%s: warning: empty archive\n", state.id);
	else if (verbose)
		fprintf(stderr, "%lu file%s, %lu block%s\n", state.files, state.files == 1 ? "" : "s", state.blocks, state.blocks == 1 ? "" : "s");
#if defined(_SEAR_EXEC)
#if !defined(_SEAR_ARGS)
#define _SEAR_ARGS	0
#endif
	if (install && sear_exec(_SEAR_EXEC, argv, _SEAR_ARGS))
	{
		Sleep(2 * 1000);
		return 1;
	}
#endif
	return 0;
}

#endif /* _RATZ_C */