findvar.c   [plain text]


/* Find a variable's value in memory, for GDB, the GNU debugger.
   Copyright 1986, 87, 89, 91, 94, 95, 96, 1998
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "frame.h"
#include "value.h"
#include "gdbcore.h"
#include "inferior.h"
#include "target.h"
#include "gdb_string.h"
#include "floatformat.h"
#include "symfile.h"		/* for overlay functions */

/* This is used to indicate that we don't know the format of the floating point
   number.  Typically, this is useful for native ports, where the actual format
   is irrelevant, since no conversions will be taking place.  */

const struct floatformat floatformat_unknown;

/* Basic byte-swapping routines.  GDB has needed these for a long time...
   All extract a target-format integer at ADDR which is LEN bytes long.  */

#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
  /* 8 bit characters are a pretty safe assumption these days, so we
     assume it throughout all these swapping routines.  If we had to deal with
     9 bit characters, we would need to make len be in bits and would have
     to re-write these routines...  */
you lose
#endif

LONGEST
extract_signed_integer (void *addr, int len)
{
  LONGEST retval;
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  if (len > (int) sizeof (LONGEST))
    error ("\
That operation is not available on integers of more than %d bytes.",
	   sizeof (LONGEST));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      p = startaddr;
      /* Do the sign extension once at the start.  */
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      for (++p; p < endaddr; ++p)
	retval = (retval << 8) | *p;
    }
  else
    {
      p = endaddr - 1;
      /* Do the sign extension once at the start.  */
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      for (--p; p >= startaddr; --p)
	retval = (retval << 8) | *p;
    }
  return retval;
}

ULONGEST
extract_unsigned_integer (void *addr, int len)
{
  ULONGEST retval;
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  if (len > (int) sizeof (ULONGEST))
    error ("\
That operation is not available on integers of more than %d bytes.",
	   sizeof (ULONGEST));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  retval = 0;
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = startaddr; p < endaddr; ++p)
	retval = (retval << 8) | *p;
    }
  else
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	retval = (retval << 8) | *p;
    }
  return retval;
}

/* Sometimes a long long unsigned integer can be extracted as a
   LONGEST value.  This is done so that we can print these values
   better.  If this integer can be converted to a LONGEST, this
   function returns 1 and sets *PVAL.  Otherwise it returns 0.  */

int
extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
{
  char *p, *first_addr;
  int len;

  len = orig_len;
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = (char *) addr;
	   len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
	   p++)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
      first_addr = p;
    }
  else
    {
      first_addr = (char *) addr;
      for (p = (char *) addr + orig_len - 1;
	   len > (int) sizeof (LONGEST) && p >= (char *) addr;
	   p--)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
    }

  if (len <= (int) sizeof (LONGEST))
    {
      *pval = (LONGEST) extract_unsigned_integer (first_addr,
						  sizeof (LONGEST));
      return 1;
    }

  return 0;
}


/* Treat the LEN bytes at ADDR as a target-format address, and return
   that address.  ADDR is a buffer in the GDB process, not in the
   inferior.

   This function should only be used by target-specific code.  It
   assumes that a pointer has the same representation as that thing's
   address represented as an integer.  Some machines use word
   addresses, or similarly munged things, for certain types of
   pointers, so that assumption doesn't hold everywhere.

   Common code should use extract_typed_address instead, or something
   else based on POINTER_TO_ADDRESS.  */

CORE_ADDR
extract_address (void *addr, int len)
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
  return (CORE_ADDR) extract_unsigned_integer (addr, len);
}


/* Treat the bytes at BUF as a pointer of type TYPE, and return the
   address it represents.  */
CORE_ADDR
extract_typed_address (void *buf, struct type *type)
{
  if (TYPE_CODE (type) != TYPE_CODE_PTR
      && TYPE_CODE (type) != TYPE_CODE_REF)
    internal_error ("findvar.c (extract_typed_address): "
		    "type is not a pointer or reference");

  return POINTER_TO_ADDRESS (type, buf);
}


void
store_signed_integer (void *addr, int len, LONGEST val)
{
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
  else
    {
      for (p = startaddr; p < endaddr; ++p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
}

void
store_unsigned_integer (void *addr, int len, ULONGEST val)
{
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
  else
    {
      for (p = startaddr; p < endaddr; ++p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
}

/* Store the address VAL as a LEN-byte value in target byte order at
   ADDR.  ADDR is a buffer in the GDB process, not in the inferior.

   This function should only be used by target-specific code.  It
   assumes that a pointer has the same representation as that thing's
   address represented as an integer.  Some machines use word
   addresses, or similarly munged things, for certain types of
   pointers, so that assumption doesn't hold everywhere.

   Common code should use store_typed_address instead, or something else
   based on ADDRESS_TO_POINTER.  */
void
store_address (void *addr, int len, LONGEST val)
{
  store_unsigned_integer (addr, len, val);
}


/* Store the address ADDR as a pointer of type TYPE at BUF, in target
   form.  */
void
store_typed_address (void *buf, struct type *type, CORE_ADDR addr)
{
  if (TYPE_CODE (type) != TYPE_CODE_PTR
      && TYPE_CODE (type) != TYPE_CODE_REF)
    internal_error ("findvar.c (store_typed_address): "
		    "type is not a pointer or reference");

  ADDRESS_TO_POINTER (type, buf, addr);
}




/* Extract a floating-point number from a target-order byte-stream at ADDR.
   Returns the value as type DOUBLEST.

   If the host and target formats agree, we just copy the raw data into the
   appropriate type of variable and return, letting the host increase precision
   as necessary.  Otherwise, we call the conversion routine and let it do the
   dirty work.  */

DOUBLEST
extract_floating (void *addr, int len)
{
  DOUBLEST dretval;

  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
    {
      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
	{
	  float retval;

	  memcpy (&retval, addr, sizeof (retval));
	  return retval;
	}
      else
	floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
    }
  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
    {
      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
	{
	  double retval;

	  memcpy (&retval, addr, sizeof (retval));
	  return retval;
	}
      else
	floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
    }
  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
    {
      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
	{
	  DOUBLEST retval;

	  memcpy (&retval, addr, sizeof (retval));
	  return retval;
	}
      else
	floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
    }
  else
    {
      error ("Can't deal with a floating point number of %d bytes.", len);
    }

  return dretval;
}

void
store_floating (void *addr, int len, DOUBLEST val)
{
  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
    {
      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
	{
	  float floatval = val;

	  memcpy (addr, &floatval, sizeof (floatval));
	}
      else
	floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
    }
  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
    {
      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
	{
	  double doubleval = val;

	  memcpy (addr, &doubleval, sizeof (doubleval));
	}
      else
	floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
    }
  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
    {
      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
	memcpy (addr, &val, sizeof (val));
      else
	floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
    }
  else
    {
      error ("Can't deal with a floating point number of %d bytes.", len);
    }
}

/* Return a `value' with the contents of register REGNUM
   in its virtual format, with the type specified by
   REGISTER_VIRTUAL_TYPE.  

   NOTE: returns NULL if register value is not available.
   Caller will check return value or die!  */

value_ptr
value_of_register (int regnum)
{
  CORE_ADDR addr;
  int optim;
  register value_ptr reg_val;
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  enum lval_type lval;

  get_saved_register (raw_buffer, &optim, &addr,
		      selected_frame, regnum, &lval);

  if (register_cached (regnum) < 0)
    return NULL;		/* register value not available */

  reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));

  /* Convert raw data to virtual format if necessary.  */

  if (REGISTER_CONVERTIBLE (regnum))
    {
      REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
				   raw_buffer, VALUE_CONTENTS_RAW (reg_val));
    }
  else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
    memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
	    REGISTER_RAW_SIZE (regnum));
  else
    internal_error ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
		    REGISTER_NAME (regnum),
		    regnum,
		    REGISTER_RAW_SIZE (regnum),
		    REGISTER_VIRTUAL_SIZE (regnum));
  VALUE_LVAL (reg_val) = lval;
  VALUE_ADDRESS (reg_val) = addr;
  VALUE_REGNO (reg_val) = regnum;
  VALUE_OPTIMIZED_OUT (reg_val) = optim;
  return reg_val;
}

/* Given a pointer of type TYPE in target form in BUF, return the
   address it represents.  */
CORE_ADDR
unsigned_pointer_to_address (struct type *type, void *buf)
{
  return extract_address (buf, TYPE_LENGTH (type));
}

CORE_ADDR
signed_pointer_to_address (struct type *type, void *buf)
{
  return extract_signed_integer (buf, TYPE_LENGTH (type));
}

/* Given an address, store it as a pointer of type TYPE in target
   format in BUF.  */
void
unsigned_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
{
  store_address (buf, TYPE_LENGTH (type), addr);
}

void
address_to_signed_pointer (struct type *type, void *buf, CORE_ADDR addr)
{
  store_signed_integer (buf, TYPE_LENGTH (type), addr);
}

/* Will calling read_var_value or locate_var_value on SYM end
   up caring what frame it is being evaluated relative to?  SYM must
   be non-NULL.  */
int
symbol_read_needs_frame (struct symbol *sym)
{
  switch (SYMBOL_CLASS (sym))
    {
      /* All cases listed explicitly so that gcc -Wall will detect it if
         we failed to consider one.  */
    case LOC_REGISTER:
    case LOC_ARG:
    case LOC_REF_ARG:
    case LOC_REGPARM:
    case LOC_REGPARM_ADDR:
    case LOC_LOCAL:
    case LOC_LOCAL_ARG:
    case LOC_BASEREG:
    case LOC_BASEREG_ARG:
    case LOC_THREAD_LOCAL_STATIC:
      return 1;

    case LOC_UNDEF:
    case LOC_CONST:
    case LOC_STATIC:
    case LOC_INDIRECT:
    case LOC_TYPEDEF:

    case LOC_LABEL:
      /* Getting the address of a label can be done independently of the block,
         even if some *uses* of that address wouldn't work so well without
         the right frame.  */

    case LOC_BLOCK:
    case LOC_CONST_BYTES:
    case LOC_UNRESOLVED:
    case LOC_OPTIMIZED_OUT:
      return 0;
    }
  return 1;
}

/* Given a struct symbol for a variable,
   and a stack frame id, read the value of the variable
   and return a (pointer to a) struct value containing the value. 
   If the variable cannot be found, return a zero pointer.
   If FRAME is NULL, use the selected_frame.  */

value_ptr
read_var_value (register struct symbol *var, struct frame_info *frame)
{
  register value_ptr v;
  struct type *type = SYMBOL_TYPE (var);
  CORE_ADDR addr;
  register int len;

  v = allocate_value (type);
  VALUE_LVAL (v) = lval_memory;	/* The most likely possibility.  */
  VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);

  len = TYPE_LENGTH (type);

  if (frame == NULL)
    frame = selected_frame;

  switch (SYMBOL_CLASS (var))
    {
    case LOC_CONST:
      /* Put the constant back in target format.  */
      store_signed_integer (VALUE_CONTENTS_RAW (v), len,
			    (LONGEST) SYMBOL_VALUE (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_LABEL:
      /* Put the constant back in target format.  */
      if (overlay_debugging)
	{
	  CORE_ADDR addr
	    = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
					SYMBOL_BFD_SECTION (var));
	  store_typed_address (VALUE_CONTENTS_RAW (v), type, addr);
	}
      else
	store_typed_address (VALUE_CONTENTS_RAW (v), type,
			      SYMBOL_VALUE_ADDRESS (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_CONST_BYTES:
      {
	char *bytes_addr;
	bytes_addr = SYMBOL_VALUE_BYTES (var);
	memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
	VALUE_LVAL (v) = not_lval;
	return v;
      }

    case LOC_STATIC:
      if (overlay_debugging)
	addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
					 SYMBOL_BFD_SECTION (var));
      else
	addr = SYMBOL_VALUE_ADDRESS (var);
      break;

    case LOC_INDIRECT:
      /* The import slot does not have a real address in it from the
         dynamic loader (dld.sl on HP-UX), if the target hasn't begun
         execution yet, so check for that. */
      if (!target_has_execution)
	error ("\
Attempt to access variable defined in different shared object or load module when\n\
addresses have not been bound by the dynamic loader. Try again when executable is running.");

      addr = SYMBOL_VALUE_ADDRESS (var);
      addr = read_memory_unsigned_integer
	(addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
      break;

    case LOC_ARG:
      if (frame == NULL)
	return 0;
      addr = FRAME_ARGS_ADDRESS (frame);
      if (!addr)
	return 0;
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_REF_ARG:
      if (frame == NULL)
	return 0;
      addr = FRAME_ARGS_ADDRESS (frame);
      if (!addr)
	return 0;
      addr += SYMBOL_VALUE (var);
      addr = read_memory_unsigned_integer
	(addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
      break;

    case LOC_LOCAL:
    case LOC_LOCAL_ARG:
      if (frame == NULL)
	return 0;
      addr = FRAME_LOCALS_ADDRESS (frame);
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_BASEREG:
    case LOC_BASEREG_ARG:
      {
	char buf[MAX_REGISTER_RAW_SIZE];
	get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
			    NULL);
	addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
	addr += SYMBOL_VALUE (var);
	break;
      }

    case LOC_THREAD_LOCAL_STATIC:
      {
	char buf[MAX_REGISTER_RAW_SIZE];

	get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
			    NULL);
	addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
	addr += SYMBOL_VALUE (var);
	break;
      }

    case LOC_TYPEDEF:
      error ("Cannot look up value of a typedef");
      break;

    case LOC_BLOCK:
      if (overlay_debugging)
	VALUE_ADDRESS (v) = symbol_overlayed_address
	  (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
      else
	VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
      return v;

    case LOC_REGISTER:
    case LOC_REGPARM:
    case LOC_REGPARM_ADDR:
      {
	struct block *b;
	int regno = SYMBOL_VALUE (var);
	value_ptr regval;

	if (frame == NULL)
	  return 0;
	b = get_frame_block (frame);

	if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
	  {
	    regval = value_from_register (lookup_pointer_type (type),
					  regno,
					  frame);

	    if (regval == NULL)
	      error ("Value of register variable not available.");

	    addr = value_as_pointer (regval);
	    VALUE_LVAL (v) = lval_memory;
	  }
	else
	  {
	    regval = value_from_register (type, regno, frame);

	    if (regval == NULL)
	      error ("Value of register variable not available.");
	    return regval;
	  }
      }
      break;

    case LOC_UNRESOLVED:
      {
	struct minimal_symbol *msym;

	msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
	if (msym == NULL)
	  return 0;
	if (overlay_debugging)
	  addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
					   SYMBOL_BFD_SECTION (msym));
	else
	  addr = SYMBOL_VALUE_ADDRESS (msym);
      }
      break;

    case LOC_OPTIMIZED_OUT:
      VALUE_LVAL (v) = not_lval;
      VALUE_OPTIMIZED_OUT (v) = 1;
      return v;

    default:
      error ("Cannot look up value of a botched symbol.");
      break;
    }

  VALUE_ADDRESS (v) = addr;
  VALUE_LAZY (v) = 1;
  return v;
}

/* Return a value of type TYPE, stored in register REGNUM, in frame
   FRAME.

   NOTE: returns NULL if register value is not available.
   Caller will check return value or die!  */

value_ptr
value_from_register (struct type *type, int regnum, struct frame_info *frame)
{
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  CORE_ADDR addr;
  int optim;
  value_ptr v = allocate_value (type);
  char *value_bytes = 0;
  int value_bytes_copied = 0;
  int num_storage_locs;
  enum lval_type lval;
  int len;

  CHECK_TYPEDEF (type);
  len = TYPE_LENGTH (type);

  /* Pointers on D10V are really only 16 bits, 
     but we lie to gdb elsewhere... */
  if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR)
    len = 2;

  VALUE_REGNO (v) = regnum;

  num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
		      ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
		      1);

  if (num_storage_locs > 1
#ifdef GDB_TARGET_IS_H8500
      || TYPE_CODE (type) == TYPE_CODE_PTR
#endif
    )
    {
      /* Value spread across multiple storage locations.  */

      int local_regnum;
      int mem_stor = 0, reg_stor = 0;
      int mem_tracking = 1;
      CORE_ADDR last_addr = 0;
      CORE_ADDR first_addr = 0;

      value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);

      /* Copy all of the data out, whereever it may be.  */

#ifdef GDB_TARGET_IS_H8500
/* This piece of hideosity is required because the H8500 treats registers
   differently depending upon whether they are used as pointers or not.  As a
   pointer, a register needs to have a page register tacked onto the front.
   An alternate way to do this would be to have gcc output different register
   numbers for the pointer & non-pointer form of the register.  But, it
   doesn't, so we're stuck with this.  */

      if (TYPE_CODE (type) == TYPE_CODE_PTR
	  && len > 2)
	{
	  int page_regnum;

	  switch (regnum)
	    {
	    case R0_REGNUM:
	    case R1_REGNUM:
	    case R2_REGNUM:
	    case R3_REGNUM:
	      page_regnum = SEG_D_REGNUM;
	      break;
	    case R4_REGNUM:
	    case R5_REGNUM:
	      page_regnum = SEG_E_REGNUM;
	      break;
	    case R6_REGNUM:
	    case R7_REGNUM:
	      page_regnum = SEG_T_REGNUM;
	      break;
	    }

	  value_bytes[0] = 0;
	  get_saved_register (value_bytes + 1,
			      &optim,
			      &addr,
			      frame,
			      page_regnum,
			      &lval);

	  if (register_cached (page_regnum) == -1)
	    return NULL;	/* register value not available */

	  if (lval == lval_register)
	    reg_stor++;
	  else
	    mem_stor++;
	  first_addr = addr;
	  last_addr = addr;

	  get_saved_register (value_bytes + 2,
			      &optim,
			      &addr,
			      frame,
			      regnum,
			      &lval);

	  if (register_cached (regnum) == -1)
	    return NULL;	/* register value not available */

	  if (lval == lval_register)
	    reg_stor++;
	  else
	    {
	      mem_stor++;
	      mem_tracking = mem_tracking && (addr == last_addr);
	    }
	  last_addr = addr;
	}
      else
#endif /* GDB_TARGET_IS_H8500 */
	for (local_regnum = regnum;
	     value_bytes_copied < len;
	     (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
	      ++local_regnum))
	  {
	    get_saved_register (value_bytes + value_bytes_copied,
				&optim,
				&addr,
				frame,
				local_regnum,
				&lval);

	    if (register_cached (local_regnum) == -1)
	      return NULL;	/* register value not available */

	    if (regnum == local_regnum)
	      first_addr = addr;
	    if (lval == lval_register)
	      reg_stor++;
	    else
	      {
		mem_stor++;

		mem_tracking =
		  (mem_tracking
		   && (regnum == local_regnum
		       || addr == last_addr));
	      }
	    last_addr = addr;
	  }

      if ((reg_stor && mem_stor)
	  || (mem_stor && !mem_tracking))
	/* Mixed storage; all of the hassle we just went through was
	   for some good purpose.  */
	{
	  VALUE_LVAL (v) = lval_reg_frame_relative;
	  VALUE_FRAME (v) = FRAME_FP (frame);
	  VALUE_FRAME_REGNUM (v) = regnum;
	}
      else if (mem_stor)
	{
	  VALUE_LVAL (v) = lval_memory;
	  VALUE_ADDRESS (v) = first_addr;
	}
      else if (reg_stor)
	{
	  VALUE_LVAL (v) = lval_register;
	  VALUE_ADDRESS (v) = first_addr;
	}
      else
	internal_error ("value_from_register: Value not stored anywhere!");

      VALUE_OPTIMIZED_OUT (v) = optim;

      /* Any structure stored in more than one register will always be
         an integral number of registers.  Otherwise, you'd need to do
         some fiddling with the last register copied here for little
         endian machines.  */

      /* Copy into the contents section of the value.  */
      memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);

      /* Finally do any conversion necessary when extracting this
         type from more than one register.  */
#ifdef REGISTER_CONVERT_TO_TYPE
      REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
#endif
      return v;
    }

  /* Data is completely contained within a single register.  Locate the
     register's contents in a real register or in core;
     read the data in raw format.  */

  get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);

  if (register_cached (regnum) == -1)
    return NULL;		/* register value not available */

  VALUE_OPTIMIZED_OUT (v) = optim;
  VALUE_LVAL (v) = lval;
  VALUE_ADDRESS (v) = addr;

  /* Convert raw data to virtual format if necessary.  */

  if (REGISTER_CONVERTIBLE (regnum))
    {
      REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
				   raw_buffer, VALUE_CONTENTS_RAW (v));
    }
  else
    {
      /* Raw and virtual formats are the same for this register.  */

      if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
	{
	  /* Big-endian, and we want less than full size.  */
	  VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
	}

      memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
    }

  if (GDB_TARGET_IS_D10V
      && TYPE_CODE (type) == TYPE_CODE_PTR)
    {
      unsigned long num;
      unsigned short snum;

      snum = (unsigned short)
	extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);

      if (TYPE_TARGET_TYPE (type)	  /* pointer to function */
	  && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
	num = D10V_MAKE_IADDR (snum);
      else 				  /* pointer to data */
	num = D10V_MAKE_DADDR (snum);

      store_address (VALUE_CONTENTS_RAW (v), 4, num);
    }

  return v;
}

/* Given a struct symbol for a variable or function,
   and a stack frame id, 
   return a (pointer to a) struct value containing the properly typed
   address.  */

value_ptr
locate_var_value (register struct symbol *var, struct frame_info *frame)
{
  CORE_ADDR addr = 0;
  struct type *type = SYMBOL_TYPE (var);
  value_ptr lazy_value;

  /* Evaluate it first; if the result is a memory address, we're fine.
     Lazy evaluation pays off here. */

  lazy_value = read_var_value (var, frame);
  if (lazy_value == 0)
    error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));

  if (VALUE_LAZY (lazy_value)
      || TYPE_CODE (type) == TYPE_CODE_FUNC)
    {
      value_ptr val;

      addr = VALUE_ADDRESS (lazy_value);
      val = value_from_pointer (lookup_pointer_type (type), addr);
      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
      return val;
    }

  /* Not a memory address; check what the problem was.  */
  switch (VALUE_LVAL (lazy_value))
    {
    case lval_register:
    case lval_reg_frame_relative:
      error ("Address requested for identifier \"%s\" which is in a register.",
	     SYMBOL_SOURCE_NAME (var));
      break;

    default:
      error ("Can't take address of \"%s\" which isn't an lvalue.",
	     SYMBOL_SOURCE_NAME (var));
      break;
    }
  return 0;			/* For lint -- never reached */
}