/* -*- Mode: Asm -*- */ /* Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc. Contributed by Denis Chertykov This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define __zero_reg__ r1 #define __tmp_reg__ r0 #define __SREG__ 0x3f #define __SP_H__ 0x3e #define __SP_L__ 0x3d /* Most of the functions here are called directly from avr.md patterns, instead of using the standard libcall mechanisms. This can make better code because GCC knows exactly which of the call-used registers (not all of them) are clobbered. */ .section .text.libgcc, "ax", @progbits .macro mov_l r_dest, r_src #if defined (__AVR_ENHANCED__) movw \r_dest, \r_src #else mov \r_dest, \r_src #endif .endm .macro mov_h r_dest, r_src #if defined (__AVR_ENHANCED__) ; empty #else mov \r_dest, \r_src #endif .endm /* Note: mulqi3, mulhi3 are open-coded on the enhanced core. */ #if !defined (__AVR_ENHANCED__) /******************************************************* Multiplication 8 x 8 *******************************************************/ #if defined (L_mulqi3) #define r_arg2 r22 /* multiplicand */ #define r_arg1 r24 /* multiplier */ #define r_res __tmp_reg__ /* result */ .global __mulqi3 .func __mulqi3 __mulqi3: clr r_res ; clear result __mulqi3_loop: sbrc r_arg1,0 add r_res,r_arg2 add r_arg2,r_arg2 ; shift multiplicand breq __mulqi3_exit ; while multiplicand != 0 lsr r_arg1 ; brne __mulqi3_loop ; exit if multiplier = 0 __mulqi3_exit: mov r_arg1,r_res ; result to return register ret #undef r_arg2 #undef r_arg1 #undef r_res .endfunc #endif /* defined (L_mulqi3) */ #if defined (L_mulqihi3) .global __mulqihi3 .func __mulqihi3 __mulqihi3: clr r25 sbrc r24, 7 dec r25 clr r23 sbrc r22, 7 dec r22 rjmp __mulhi3 .endfunc #endif /* defined (L_mulqihi3) */ #if defined (L_umulqihi3) .global __umulqihi3 .func __umulqihi3 __umulqihi3: clr r25 clr r23 rjmp __mulhi3 .endfunc #endif /* defined (L_umulqihi3) */ /******************************************************* Multiplication 16 x 16 *******************************************************/ #if defined (L_mulhi3) #define r_arg1L r24 /* multiplier Low */ #define r_arg1H r25 /* multiplier High */ #define r_arg2L r22 /* multiplicand Low */ #define r_arg2H r23 /* multiplicand High */ #define r_resL __tmp_reg__ /* result Low */ #define r_resH r21 /* result High */ .global __mulhi3 .func __mulhi3 __mulhi3: clr r_resH ; clear result clr r_resL ; clear result __mulhi3_loop: sbrs r_arg1L,0 rjmp __mulhi3_skip1 add r_resL,r_arg2L ; result + multiplicand adc r_resH,r_arg2H __mulhi3_skip1: add r_arg2L,r_arg2L ; shift multiplicand adc r_arg2H,r_arg2H cp r_arg2L,__zero_reg__ cpc r_arg2H,__zero_reg__ breq __mulhi3_exit ; while multiplicand != 0 lsr r_arg1H ; gets LSB of multiplier ror r_arg1L sbiw r_arg1L,0 brne __mulhi3_loop ; exit if multiplier = 0 __mulhi3_exit: mov r_arg1H,r_resH ; result to return register mov r_arg1L,r_resL ret #undef r_arg1L #undef r_arg1H #undef r_arg2L #undef r_arg2H #undef r_resL #undef r_resH .endfunc #endif /* defined (L_mulhi3) */ #endif /* !defined (__AVR_ENHANCED__) */ #if defined (L_mulhisi3) .global __mulhisi3 .func __mulhisi3 __mulhisi3: mov_l r18, r24 mov_h r19, r25 clr r24 sbrc r23, 7 dec r24 mov r25, r24 clr r20 sbrc r19, 7 dec r20 mov r21, r20 rjmp __mulsi3 .endfunc #endif /* defined (L_mulhisi3) */ #if defined (L_umulhisi3) .global __umulhisi3 .func __umulhisi3 __umulhisi3: mov_l r18, r24 mov_h r19, r25 clr r24 clr r25 clr r20 clr r21 rjmp __mulsi3 .endfunc #endif /* defined (L_umulhisi3) */ #if defined (L_mulsi3) /******************************************************* Multiplication 32 x 32 *******************************************************/ #define r_arg1L r22 /* multiplier Low */ #define r_arg1H r23 #define r_arg1HL r24 #define r_arg1HH r25 /* multiplier High */ #define r_arg2L r18 /* multiplicand Low */ #define r_arg2H r19 #define r_arg2HL r20 #define r_arg2HH r21 /* multiplicand High */ #define r_resL r26 /* result Low */ #define r_resH r27 #define r_resHL r30 #define r_resHH r31 /* result High */ .global __mulsi3 .func __mulsi3 __mulsi3: #if defined (__AVR_ENHANCED__) mul r_arg1L, r_arg2L movw r_resL, r0 mul r_arg1H, r_arg2H movw r_resHL, r0 mul r_arg1HL, r_arg2L add r_resHL, r0 adc r_resHH, r1 mul r_arg1L, r_arg2HL add r_resHL, r0 adc r_resHH, r1 mul r_arg1HH, r_arg2L add r_resHH, r0 mul r_arg1HL, r_arg2H add r_resHH, r0 mul r_arg1H, r_arg2HL add r_resHH, r0 mul r_arg1L, r_arg2HH add r_resHH, r0 clr r_arg1HH ; use instead of __zero_reg__ to add carry mul r_arg1H, r_arg2L add r_resH, r0 adc r_resHL, r1 adc r_resHH, r_arg1HH ; add carry mul r_arg1L, r_arg2H add r_resH, r0 adc r_resHL, r1 adc r_resHH, r_arg1HH ; add carry movw r_arg1L, r_resL movw r_arg1HL, r_resHL clr r1 ; __zero_reg__ clobbered by "mul" ret #else clr r_resHH ; clear result clr r_resHL ; clear result clr r_resH ; clear result clr r_resL ; clear result __mulsi3_loop: sbrs r_arg1L,0 rjmp __mulsi3_skip1 add r_resL,r_arg2L ; result + multiplicand adc r_resH,r_arg2H adc r_resHL,r_arg2HL adc r_resHH,r_arg2HH __mulsi3_skip1: add r_arg2L,r_arg2L ; shift multiplicand adc r_arg2H,r_arg2H adc r_arg2HL,r_arg2HL adc r_arg2HH,r_arg2HH lsr r_arg1HH ; gets LSB of multiplier ror r_arg1HL ror r_arg1H ror r_arg1L brne __mulsi3_loop sbiw r_arg1HL,0 cpc r_arg1H,r_arg1L brne __mulsi3_loop ; exit if multiplier = 0 __mulsi3_exit: mov r_arg1HH,r_resHH ; result to return register mov r_arg1HL,r_resHL mov r_arg1H,r_resH mov r_arg1L,r_resL ret #endif /* !defined (__AVR_ENHANCED__) */ #undef r_arg1L #undef r_arg1H #undef r_arg1HL #undef r_arg1HH #undef r_arg2L #undef r_arg2H #undef r_arg2HL #undef r_arg2HH #undef r_resL #undef r_resH #undef r_resHL #undef r_resHH .endfunc #endif /* defined (L_mulsi3) */ /******************************************************* Division 8 / 8 => (result + remainder) *******************************************************/ #define r_rem r25 /* remainder */ #define r_arg1 r24 /* dividend, quotient */ #define r_arg2 r22 /* divisor */ #define r_cnt r23 /* loop count */ #if defined (L_udivmodqi4) .global __udivmodqi4 .func __udivmodqi4 __udivmodqi4: sub r_rem,r_rem ; clear remainder and carry ldi r_cnt,9 ; init loop counter rjmp __udivmodqi4_ep ; jump to entry point __udivmodqi4_loop: rol r_rem ; shift dividend into remainder cp r_rem,r_arg2 ; compare remainder & divisor brcs __udivmodqi4_ep ; remainder <= divisor sub r_rem,r_arg2 ; restore remainder __udivmodqi4_ep: rol r_arg1 ; shift dividend (with CARRY) dec r_cnt ; decrement loop counter brne __udivmodqi4_loop com r_arg1 ; complement result ; because C flag was complemented in loop ret .endfunc #endif /* defined (L_udivmodqi4) */ #if defined (L_divmodqi4) .global __divmodqi4 .func __divmodqi4 __divmodqi4: bst r_arg1,7 ; store sign of dividend mov __tmp_reg__,r_arg1 eor __tmp_reg__,r_arg2; r0.7 is sign of result sbrc r_arg1,7 neg r_arg1 ; dividend negative : negate sbrc r_arg2,7 neg r_arg2 ; divisor negative : negate rcall __udivmodqi4 ; do the unsigned div/mod brtc __divmodqi4_1 neg r_rem ; correct remainder sign __divmodqi4_1: sbrc __tmp_reg__,7 neg r_arg1 ; correct result sign __divmodqi4_exit: ret .endfunc #endif /* defined (L_divmodqi4) */ #undef r_rem #undef r_arg1 #undef r_arg2 #undef r_cnt /******************************************************* Division 16 / 16 => (result + remainder) *******************************************************/ #define r_remL r26 /* remainder Low */ #define r_remH r27 /* remainder High */ /* return: remainder */ #define r_arg1L r24 /* dividend Low */ #define r_arg1H r25 /* dividend High */ /* return: quotient */ #define r_arg2L r22 /* divisor Low */ #define r_arg2H r23 /* divisor High */ #define r_cnt r21 /* loop count */ #if defined (L_udivmodhi4) .global __udivmodhi4 .func __udivmodhi4 __udivmodhi4: sub r_remL,r_remL sub r_remH,r_remH ; clear remainder and carry ldi r_cnt,17 ; init loop counter rjmp __udivmodhi4_ep ; jump to entry point __udivmodhi4_loop: rol r_remL ; shift dividend into remainder rol r_remH cp r_remL,r_arg2L ; compare remainder & divisor cpc r_remH,r_arg2H brcs __udivmodhi4_ep ; remainder < divisor sub r_remL,r_arg2L ; restore remainder sbc r_remH,r_arg2H __udivmodhi4_ep: rol r_arg1L ; shift dividend (with CARRY) rol r_arg1H dec r_cnt ; decrement loop counter brne __udivmodhi4_loop com r_arg1L com r_arg1H ; div/mod results to return registers, as for the div() function mov_l r_arg2L, r_arg1L ; quotient mov_h r_arg2H, r_arg1H mov_l r_arg1L, r_remL ; remainder mov_h r_arg1H, r_remH ret .endfunc #endif /* defined (L_udivmodhi4) */ #if defined (L_divmodhi4) .global __divmodhi4 .func __divmodhi4 __divmodhi4: .global _div _div: bst r_arg1H,7 ; store sign of dividend mov __tmp_reg__,r_arg1H eor __tmp_reg__,r_arg2H ; r0.7 is sign of result rcall __divmodhi4_neg1 ; dividend negative : negate sbrc r_arg2H,7 rcall __divmodhi4_neg2 ; divisor negative : negate rcall __udivmodhi4 ; do the unsigned div/mod rcall __divmodhi4_neg1 ; correct remainder sign tst __tmp_reg__ brpl __divmodhi4_exit __divmodhi4_neg2: com r_arg2H neg r_arg2L ; correct divisor/result sign sbci r_arg2H,0xff __divmodhi4_exit: ret __divmodhi4_neg1: brtc __divmodhi4_exit com r_arg1H neg r_arg1L ; correct dividend/remainder sign sbci r_arg1H,0xff ret .endfunc #endif /* defined (L_divmodhi4) */ #undef r_remH #undef r_remL #undef r_arg1H #undef r_arg1L #undef r_arg2H #undef r_arg2L #undef r_cnt /******************************************************* Division 32 / 32 => (result + remainder) *******************************************************/ #define r_remHH r31 /* remainder High */ #define r_remHL r30 #define r_remH r27 #define r_remL r26 /* remainder Low */ /* return: remainder */ #define r_arg1HH r25 /* dividend High */ #define r_arg1HL r24 #define r_arg1H r23 #define r_arg1L r22 /* dividend Low */ /* return: quotient */ #define r_arg2HH r21 /* divisor High */ #define r_arg2HL r20 #define r_arg2H r19 #define r_arg2L r18 /* divisor Low */ #define r_cnt __zero_reg__ /* loop count (0 after the loop!) */ #if defined (L_udivmodsi4) .global __udivmodsi4 .func __udivmodsi4 __udivmodsi4: ldi r_remL, 33 ; init loop counter mov r_cnt, r_remL sub r_remL,r_remL sub r_remH,r_remH ; clear remainder and carry mov_l r_remHL, r_remL mov_h r_remHH, r_remH rjmp __udivmodsi4_ep ; jump to entry point __udivmodsi4_loop: rol r_remL ; shift dividend into remainder rol r_remH rol r_remHL rol r_remHH cp r_remL,r_arg2L ; compare remainder & divisor cpc r_remH,r_arg2H cpc r_remHL,r_arg2HL cpc r_remHH,r_arg2HH brcs __udivmodsi4_ep ; remainder <= divisor sub r_remL,r_arg2L ; restore remainder sbc r_remH,r_arg2H sbc r_remHL,r_arg2HL sbc r_remHH,r_arg2HH __udivmodsi4_ep: rol r_arg1L ; shift dividend (with CARRY) rol r_arg1H rol r_arg1HL rol r_arg1HH dec r_cnt ; decrement loop counter brne __udivmodsi4_loop ; __zero_reg__ now restored (r_cnt == 0) com r_arg1L com r_arg1H com r_arg1HL com r_arg1HH ; div/mod results to return registers, as for the ldiv() function mov_l r_arg2L, r_arg1L ; quotient mov_h r_arg2H, r_arg1H mov_l r_arg2HL, r_arg1HL mov_h r_arg2HH, r_arg1HH mov_l r_arg1L, r_remL ; remainder mov_h r_arg1H, r_remH mov_l r_arg1HL, r_remHL mov_h r_arg1HH, r_remHH ret .endfunc #endif /* defined (L_udivmodsi4) */ #if defined (L_divmodsi4) .global __divmodsi4 .func __divmodsi4 __divmodsi4: bst r_arg1HH,7 ; store sign of dividend mov __tmp_reg__,r_arg1HH eor __tmp_reg__,r_arg2HH ; r0.7 is sign of result rcall __divmodsi4_neg1 ; dividend negative : negate sbrc r_arg2HH,7 rcall __divmodsi4_neg2 ; divisor negative : negate rcall __udivmodsi4 ; do the unsigned div/mod rcall __divmodsi4_neg1 ; correct remainder sign rol __tmp_reg__ brcc __divmodsi4_exit __divmodsi4_neg2: com r_arg2HH com r_arg2HL com r_arg2H neg r_arg2L ; correct divisor/quotient sign sbci r_arg2H,0xff sbci r_arg2HL,0xff sbci r_arg2HH,0xff __divmodsi4_exit: ret __divmodsi4_neg1: brtc __divmodsi4_exit com r_arg1HH com r_arg1HL com r_arg1H neg r_arg1L ; correct dividend/remainder sign sbci r_arg1H, 0xff sbci r_arg1HL,0xff sbci r_arg1HH,0xff ret .endfunc #endif /* defined (L_divmodsi4) */ /********************************** * This is a prologue subroutine **********************************/ #if defined (L_prologue) .global __prologue_saves__ .func __prologue_saves__ __prologue_saves__: push r2 push r3 push r4 push r5 push r6 push r7 push r8 push r9 push r10 push r11 push r12 push r13 push r14 push r15 push r16 push r17 push r28 push r29 in r28,__SP_L__ in r29,__SP_H__ sub r28,r26 sbc r29,r27 in __tmp_reg__,__SREG__ cli out __SP_H__,r29 out __SREG__,__tmp_reg__ out __SP_L__,r28 ijmp .endfunc #endif /* defined (L_prologue) */ /* * This is an epilogue subroutine */ #if defined (L_epilogue) .global __epilogue_restores__ .func __epilogue_restores__ __epilogue_restores__: ldd r2,Y+18 ldd r3,Y+17 ldd r4,Y+16 ldd r5,Y+15 ldd r6,Y+14 ldd r7,Y+13 ldd r8,Y+12 ldd r9,Y+11 ldd r10,Y+10 ldd r11,Y+9 ldd r12,Y+8 ldd r13,Y+7 ldd r14,Y+6 ldd r15,Y+5 ldd r16,Y+4 ldd r17,Y+3 ldd r26,Y+2 ldd r27,Y+1 add r28,r30 adc r29,__zero_reg__ in __tmp_reg__,__SREG__ cli out __SP_H__,r29 out __SREG__,__tmp_reg__ out __SP_L__,r28 mov_l r28, r26 mov_h r29, r27 ret .endfunc #endif /* defined (L_epilogue) */ #ifdef L_exit .section .fini9,"ax",@progbits .global _exit .func _exit _exit: .weak exit exit: /* Code from .fini8 ... .fini1 sections inserted by ld script. */ .section .fini0,"ax",@progbits __stop_program: rjmp __stop_program .endfunc #endif /* defined (L_exit) */ #ifdef L_cleanup .weak _cleanup .func _cleanup _cleanup: ret .endfunc #endif /* defined (L_cleanup) */ #ifdef L_tablejump .global __tablejump2__ .func __tablejump2__ __tablejump2__: lsl r30 rol r31 .global __tablejump__ __tablejump__: #if defined (__AVR_ENHANCED__) lpm __tmp_reg__, Z+ lpm r31, Z mov r30, __tmp_reg__ ijmp #else lpm adiw r30, 1 push r0 lpm push r0 ret #endif .endfunc #endif /* defined (L_tablejump) */ /* __do_copy_data is only necessary if there is anything in .data section. Does not use RAMPZ - crt*.o provides a replacement for >64K devices. */ #ifdef L_copy_data .section .init4,"ax",@progbits .global __do_copy_data __do_copy_data: ldi r17, hi8(__data_end) ldi r26, lo8(__data_start) ldi r27, hi8(__data_start) ldi r30, lo8(__data_load_start) ldi r31, hi8(__data_load_start) rjmp .do_copy_data_start .do_copy_data_loop: #if defined (__AVR_ENHANCED__) lpm r0, Z+ #else lpm adiw r30, 1 #endif st X+, r0 .do_copy_data_start: cpi r26, lo8(__data_end) cpc r27, r17 brne .do_copy_data_loop #endif /* L_copy_data */ /* __do_clear_bss is only necessary if there is anything in .bss section. */ #ifdef L_clear_bss .section .init4,"ax",@progbits .global __do_clear_bss __do_clear_bss: ldi r17, hi8(__bss_end) ldi r26, lo8(__bss_start) ldi r27, hi8(__bss_start) rjmp .do_clear_bss_start .do_clear_bss_loop: st X+, __zero_reg__ .do_clear_bss_start: cpi r26, lo8(__bss_end) cpc r27, r17 brne .do_clear_bss_loop #endif /* L_clear_bss */ /* __do_global_ctors and __do_global_dtors are only necessary if there are any constructors/destructors. */ #if defined (__AVR_MEGA__) #define XCALL call #else #define XCALL rcall #endif #ifdef L_ctors .section .init6,"ax",@progbits .global __do_global_ctors __do_global_ctors: ldi r17, hi8(__ctors_start) ldi r28, lo8(__ctors_end) ldi r29, hi8(__ctors_end) rjmp .do_global_ctors_start .do_global_ctors_loop: sbiw r28, 2 mov_h r31, r29 mov_l r30, r28 XCALL __tablejump__ .do_global_ctors_start: cpi r28, lo8(__ctors_start) cpc r29, r17 brne .do_global_ctors_loop #endif /* L_ctors */ #ifdef L_dtors .section .fini6,"ax",@progbits .global __do_global_dtors __do_global_dtors: ldi r17, hi8(__dtors_end) ldi r28, lo8(__dtors_start) ldi r29, hi8(__dtors_start) rjmp .do_global_dtors_start .do_global_dtors_loop: mov_h r31, r29 mov_l r30, r28 XCALL __tablejump__ adiw r28, 2 .do_global_dtors_start: cpi r28, lo8(__dtors_end) cpc r29, r17 brne .do_global_dtors_loop #endif /* L_dtors */