------------------------------------------------------------------------------ -- -- -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS -- -- -- -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S -- -- -- -- B o d y -- -- -- -- -- -- Copyright (C) 1992-2001, Free Software Foundation, Inc. -- -- -- -- GNARL is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNARL is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNARL; see file COPYING. If not, write -- -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- -- MA 02111-1307, USA. -- -- -- -- As a special exception, if other files instantiate generics from this -- -- unit, or you link this unit with other files to produce an executable, -- -- this unit does not by itself cause the resulting executable to be -- -- covered by the GNU General Public License. This exception does not -- -- however invalidate any other reasons why the executable file might be -- -- covered by the GNU Public License. -- -- -- -- GNARL was developed by the GNARL team at Florida State University. -- -- Extensive contributions were provided by Ada Core Technologies, Inc. -- -- -- ------------------------------------------------------------------------------ -- This is a IRIX (pthread library) version of this package. -- This package contains all the GNULL primitives that interface directly -- with the underlying OS. pragma Polling (Off); -- Turn off polling, we do not want ATC polling to take place during -- tasking operations. It causes infinite loops and other problems. with Interfaces.C; -- used for int -- size_t with System.Task_Info; with System.Tasking.Debug; -- used for Known_Tasks with System.IO; -- used for Put_Line with System.Interrupt_Management; -- used for Keep_Unmasked -- Abort_Task_Interrupt -- Interrupt_ID with System.Interrupt_Management.Operations; -- used for Set_Interrupt_Mask -- All_Tasks_Mask pragma Elaborate_All (System.Interrupt_Management.Operations); with System.Parameters; -- used for Size_Type with System.Tasking; -- used for Ada_Task_Control_Block -- Task_ID with System.Soft_Links; -- used for Defer/Undefer_Abort -- Note that we do not use System.Tasking.Initialization directly since -- this is a higher level package that we shouldn't depend on. For example -- when using the restricted run time, it is replaced by -- System.Tasking.Restricted.Initialization with System.Program_Info; -- used for Default_Task_Stack -- Default_Time_Slice -- Stack_Guard_Pages -- Pthread_Sched_Signal -- Pthread_Arena_Size with System.OS_Interface; -- used for various type, constant, and operations with System.OS_Primitives; -- used for Delay_Modes with Unchecked_Conversion; with Unchecked_Deallocation; package body System.Task_Primitives.Operations is use System.Tasking; use System.Tasking.Debug; use Interfaces.C; use System.OS_Interface; use System.OS_Primitives; use System.Parameters; package SSL renames System.Soft_Links; ------------------ -- Local Data -- ------------------ -- The followings are logically constants, but need to be initialized -- at run time. ATCB_Key : aliased pthread_key_t; -- Key used to find the Ada Task_ID associated with a thread Single_RTS_Lock : aliased RTS_Lock; -- This is a lock to allow only one thread of control in the RTS at -- a time; it is used to execute in mutual exclusion from all other tasks. -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List Environment_Task_ID : Task_ID; -- A variable to hold Task_ID for the environment task. Locking_Policy : Character; pragma Import (C, Locking_Policy, "__gl_locking_policy"); Real_Time_Clock_Id : constant clockid_t := CLOCK_REALTIME; Unblocked_Signal_Mask : aliased sigset_t; ----------------------- -- Local Subprograms -- ----------------------- function To_Task_ID is new Unchecked_Conversion (System.Address, Task_ID); function To_Address is new Unchecked_Conversion (Task_ID, System.Address); procedure Abort_Handler (Sig : Signal); ------------------- -- Abort_Handler -- ------------------- procedure Abort_Handler (Sig : Signal) is T : Task_ID := Self; Result : Interfaces.C.int; Old_Set : aliased sigset_t; begin if T.Deferral_Level = 0 and then T.Pending_ATC_Level < T.ATC_Nesting_Level then -- Make sure signals used for RTS internal purpose are unmasked Result := pthread_sigmask (SIG_UNBLOCK, Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access); pragma Assert (Result = 0); raise Standard'Abort_Signal; end if; end Abort_Handler; ----------------- -- Stack_Guard -- ----------------- -- The underlying thread system sets a guard page at the -- bottom of a thread stack, so nothing is needed. procedure Stack_Guard (T : ST.Task_ID; On : Boolean) is begin null; end Stack_Guard; ------------------- -- Get_Thread_Id -- ------------------- function Get_Thread_Id (T : ST.Task_ID) return OSI.Thread_Id is begin return T.Common.LL.Thread; end Get_Thread_Id; ---------- -- Self -- ---------- function Self return Task_ID is Result : System.Address; begin Result := pthread_getspecific (ATCB_Key); pragma Assert (Result /= System.Null_Address); return To_Task_ID (Result); end Self; --------------------- -- Initialize_Lock -- --------------------- -- Note: mutexes and cond_variables needed per-task basis are -- initialized in Initialize_TCB and the Storage_Error is -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...) -- used in RTS is initialized before any status change of RTS. -- Therefore rasing Storage_Error in the following routines -- should be able to be handled safely. procedure Initialize_Lock (Prio : System.Any_Priority; L : access Lock) is Attributes : aliased pthread_mutexattr_t; Result : Interfaces.C.int; begin Result := pthread_mutexattr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; if Locking_Policy = 'C' then Result := pthread_mutexattr_setprotocol (Attributes'Access, PTHREAD_PRIO_PROTECT); pragma Assert (Result = 0); Result := pthread_mutexattr_setprioceiling (Attributes'Access, Interfaces.C.int (Prio)); pragma Assert (Result = 0); end if; Result := pthread_mutex_init (L, Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then Result := pthread_mutexattr_destroy (Attributes'Access); raise Storage_Error; end if; Result := pthread_mutexattr_destroy (Attributes'Access); pragma Assert (Result = 0); end Initialize_Lock; procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is Attributes : aliased pthread_mutexattr_t; Result : Interfaces.C.int; begin Result := pthread_mutexattr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; if Locking_Policy = 'C' then Result := pthread_mutexattr_setprotocol (Attributes'Access, PTHREAD_PRIO_PROTECT); pragma Assert (Result = 0); Result := pthread_mutexattr_setprioceiling (Attributes'Access, Interfaces.C.int (System.Any_Priority'Last)); pragma Assert (Result = 0); end if; Result := pthread_mutex_init (L, Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then Result := pthread_mutexattr_destroy (Attributes'Access); raise Storage_Error; end if; Result := pthread_mutexattr_destroy (Attributes'Access); end Initialize_Lock; ------------------- -- Finalize_Lock -- ------------------- procedure Finalize_Lock (L : access Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_destroy (L); pragma Assert (Result = 0); end Finalize_Lock; procedure Finalize_Lock (L : access RTS_Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_destroy (L); pragma Assert (Result = 0); end Finalize_Lock; ---------------- -- Write_Lock -- ---------------- procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (L); Ceiling_Violation := Result = EINVAL; -- assumes the cause of EINVAL is a priority ceiling violation pragma Assert (Result = 0 or else Result = EINVAL); end Write_Lock; procedure Write_Lock (L : access RTS_Lock; Global_Lock : Boolean := False) is Result : Interfaces.C.int; begin if not Single_Lock or else Global_Lock then Result := pthread_mutex_lock (L); pragma Assert (Result = 0); end if; end Write_Lock; procedure Write_Lock (T : Task_ID) is Result : Interfaces.C.int; begin if not Single_Lock then Result := pthread_mutex_lock (T.Common.LL.L'Access); pragma Assert (Result = 0); end if; end Write_Lock; --------------- -- Read_Lock -- --------------- procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is begin Write_Lock (L, Ceiling_Violation); end Read_Lock; ------------ -- Unlock -- ------------ procedure Unlock (L : access Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_unlock (L); pragma Assert (Result = 0); end Unlock; procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is Result : Interfaces.C.int; begin if not Single_Lock or else Global_Lock then Result := pthread_mutex_unlock (L); pragma Assert (Result = 0); end if; end Unlock; procedure Unlock (T : Task_ID) is Result : Interfaces.C.int; begin if not Single_Lock then Result := pthread_mutex_unlock (T.Common.LL.L'Access); pragma Assert (Result = 0); end if; end Unlock; ----------- -- Sleep -- ----------- procedure Sleep (Self_ID : ST.Task_ID; Reason : System.Tasking.Task_States) is Result : Interfaces.C.int; begin if Single_Lock then Result := pthread_cond_wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access); else Result := pthread_cond_wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access); end if; -- EINTR is not considered a failure. pragma Assert (Result = 0 or else Result = EINTR); end Sleep; ----------------- -- Timed_Sleep -- ----------------- procedure Timed_Sleep (Self_ID : Task_ID; Time : Duration; Mode : ST.Delay_Modes; Reason : Task_States; Timedout : out Boolean; Yielded : out Boolean) is Check_Time : constant Duration := Monotonic_Clock; Abs_Time : Duration; Request : aliased timespec; Result : Interfaces.C.int; begin Timedout := True; Yielded := False; if Mode = Relative then Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time; else Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time); end if; if Abs_Time > Check_Time then Request := To_Timespec (Abs_Time); loop exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level or else Self_ID.Pending_Priority_Change; if Single_Lock then Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access, Request'Access); else Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access, Request'Access); end if; exit when Abs_Time <= Monotonic_Clock; if Result = 0 or else errno = EINTR then Timedout := False; exit; end if; end loop; end if; end Timed_Sleep; ----------------- -- Timed_Delay -- ----------------- -- This is for use in implementing delay statements, so -- we assume the caller is abort-deferred but is holding -- no locks. procedure Timed_Delay (Self_ID : Task_ID; Time : Duration; Mode : ST.Delay_Modes) is Check_Time : constant Duration := Monotonic_Clock; Abs_Time : Duration; Request : aliased timespec; Result : Interfaces.C.int; begin -- Only the little window between deferring abort and -- locking Self_ID is the reason we need to -- check for pending abort and priority change below! :( SSL.Abort_Defer.all; if Single_Lock then Lock_RTS; end if; Write_Lock (Self_ID); if Mode = Relative then Abs_Time := Time + Check_Time; else Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time); end if; if Abs_Time > Check_Time then Request := To_Timespec (Abs_Time); Self_ID.Common.State := Delay_Sleep; loop if Self_ID.Pending_Priority_Change then Self_ID.Pending_Priority_Change := False; Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority; Set_Priority (Self_ID, Self_ID.Common.Base_Priority); end if; exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access, Request'Access); exit when Abs_Time <= Monotonic_Clock; pragma Assert (Result = 0 or else Result = ETIMEDOUT or else Result = EINTR); end loop; Self_ID.Common.State := Runnable; end if; Unlock (Self_ID); if Single_Lock then Unlock_RTS; end if; Yield; SSL.Abort_Undefer.all; end Timed_Delay; --------------------- -- Monotonic_Clock -- --------------------- function Monotonic_Clock return Duration is TS : aliased timespec; Result : Interfaces.C.int; begin Result := clock_gettime (Real_Time_Clock_Id, TS'Unchecked_Access); pragma Assert (Result = 0); return To_Duration (TS); end Monotonic_Clock; ------------------- -- RT_Resolution -- ------------------- function RT_Resolution return Duration is begin -- The clock_getres (Real_Time_Clock_Id) function appears to return -- the interrupt resolution of the realtime clock and not the actual -- resolution of reading the clock. Even though this last value is -- only guaranteed to be 100 Hz, at least the Origin 200 appears to -- have a microsecond resolution or better. -- ??? We should figure out a method to return the right value on -- all SGI hardware. return 0.000_001; -- Assume microsecond resolution of clock end RT_Resolution; ------------ -- Wakeup -- ------------ procedure Wakeup (T : ST.Task_ID; Reason : System.Tasking.Task_States) is Result : Interfaces.C.int; begin Result := pthread_cond_signal (T.Common.LL.CV'Access); pragma Assert (Result = 0); end Wakeup; ----------- -- Yield -- ----------- procedure Yield (Do_Yield : Boolean := True) is Result : Interfaces.C.int; begin if Do_Yield then Result := sched_yield; end if; end Yield; ------------------ -- Set_Priority -- ------------------ procedure Set_Priority (T : Task_ID; Prio : System.Any_Priority; Loss_Of_Inheritance : Boolean := False) is Result : Interfaces.C.int; Param : aliased struct_sched_param; Sched_Policy : Interfaces.C.int; use type System.Task_Info.Task_Info_Type; function To_Int is new Unchecked_Conversion (System.Task_Info.Thread_Scheduling_Policy, Interfaces.C.int); begin T.Common.Current_Priority := Prio; Param.sched_priority := Interfaces.C.int (Prio); if T.Common.Task_Info /= null then Sched_Policy := To_Int (T.Common.Task_Info.Policy); else Sched_Policy := SCHED_FIFO; end if; Result := pthread_setschedparam (T.Common.LL.Thread, Sched_Policy, Param'Access); pragma Assert (Result = 0); end Set_Priority; ------------------ -- Get_Priority -- ------------------ function Get_Priority (T : Task_ID) return System.Any_Priority is begin return T.Common.Current_Priority; end Get_Priority; ---------------- -- Enter_Task -- ---------------- procedure Enter_Task (Self_ID : Task_ID) is Result : Interfaces.C.int; function To_Int is new Unchecked_Conversion (System.Task_Info.CPU_Number, Interfaces.C.int); use System.Task_Info; begin Self_ID.Common.LL.Thread := pthread_self; Result := pthread_setspecific (ATCB_Key, To_Address (Self_ID)); pragma Assert (Result = 0); if Self_ID.Common.Task_Info /= null and then Self_ID.Common.Task_Info.Scope = PTHREAD_SCOPE_SYSTEM and then Self_ID.Common.Task_Info.Runon_CPU /= ANY_CPU then Result := pthread_setrunon_np (To_Int (Self_ID.Common.Task_Info.Runon_CPU)); pragma Assert (Result = 0); end if; Lock_RTS; for J in Known_Tasks'Range loop if Known_Tasks (J) = null then Known_Tasks (J) := Self_ID; Self_ID.Known_Tasks_Index := J; exit; end if; end loop; Unlock_RTS; end Enter_Task; -------------- -- New_ATCB -- -------------- function New_ATCB (Entry_Num : Task_Entry_Index) return Task_ID is begin return new Ada_Task_Control_Block (Entry_Num); end New_ATCB; -------------------- -- Initialize_TCB -- -------------------- procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is Result : Interfaces.C.int; Cond_Attr : aliased pthread_condattr_t; begin if not Single_Lock then Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level); end if; Result := pthread_condattr_init (Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = 0 then Result := pthread_cond_init (Self_ID.Common.LL.CV'Access, Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); end if; if Result = 0 then Succeeded := True; else if not Single_Lock then Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access); pragma Assert (Result = 0); end if; Succeeded := False; end if; Result := pthread_condattr_destroy (Cond_Attr'Access); pragma Assert (Result = 0); end Initialize_TCB; ----------------- -- Create_Task -- ----------------- procedure Create_Task (T : Task_ID; Wrapper : System.Address; Stack_Size : System.Parameters.Size_Type; Priority : System.Any_Priority; Succeeded : out Boolean) is use System.Task_Info; Attributes : aliased pthread_attr_t; Sched_Param : aliased struct_sched_param; Adjusted_Stack_Size : Interfaces.C.size_t; Result : Interfaces.C.int; function Thread_Body_Access is new Unchecked_Conversion (System.Address, Thread_Body); function To_Int is new Unchecked_Conversion (System.Task_Info.Thread_Scheduling_Scope, Interfaces.C.int); function To_Int is new Unchecked_Conversion (System.Task_Info.Thread_Scheduling_Inheritance, Interfaces.C.int); function To_Int is new Unchecked_Conversion (System.Task_Info.Thread_Scheduling_Policy, Interfaces.C.int); begin if Stack_Size = System.Parameters.Unspecified_Size then Adjusted_Stack_Size := Interfaces.C.size_t (System.Program_Info.Default_Task_Stack); elsif Stack_Size < Size_Type (Minimum_Stack_Size) then Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size); else Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size); end if; Result := pthread_attr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Succeeded := False; return; end if; Result := pthread_attr_setdetachstate (Attributes'Access, PTHREAD_CREATE_DETACHED); pragma Assert (Result = 0); Result := pthread_attr_setstacksize (Attributes'Access, Interfaces.C.size_t (Adjusted_Stack_Size)); pragma Assert (Result = 0); if T.Common.Task_Info /= null then Result := pthread_attr_setscope (Attributes'Access, To_Int (T.Common.Task_Info.Scope)); pragma Assert (Result = 0); Result := pthread_attr_setinheritsched (Attributes'Access, To_Int (T.Common.Task_Info.Inheritance)); pragma Assert (Result = 0); Result := pthread_attr_setschedpolicy (Attributes'Access, To_Int (T.Common.Task_Info.Policy)); pragma Assert (Result = 0); Sched_Param.sched_priority := Interfaces.C.int (T.Common.Task_Info.Priority); Result := pthread_attr_setschedparam (Attributes'Access, Sched_Param'Access); pragma Assert (Result = 0); end if; -- Since the initial signal mask of a thread is inherited from the -- creator, and the Environment task has all its signals masked, we -- do not need to manipulate caller's signal mask at this point. -- All tasks in RTS will have All_Tasks_Mask initially. Result := pthread_create (T.Common.LL.Thread'Access, Attributes'Access, Thread_Body_Access (Wrapper), To_Address (T)); if Result /= 0 and then T.Common.Task_Info /= null and then T.Common.Task_Info.Scope = PTHREAD_SCOPE_SYSTEM then -- The pthread_create call may have failed because we -- asked for a system scope pthread and none were -- available (probably because the program was not executed -- by the superuser). Let's try for a process scope pthread -- instead of raising Tasking_Error. System.IO.Put_Line ("Request for PTHREAD_SCOPE_SYSTEM in Task_Info pragma for task"); System.IO.Put (""""); System.IO.Put (T.Common.Task_Image.all); System.IO.Put_Line (""" could not be honored. "); System.IO.Put_Line ("Scope changed to PTHREAD_SCOPE_PROCESS"); T.Common.Task_Info.Scope := PTHREAD_SCOPE_PROCESS; Result := pthread_attr_setscope (Attributes'Access, To_Int (T.Common.Task_Info.Scope)); pragma Assert (Result = 0); Result := pthread_create (T.Common.LL.Thread'Access, Attributes'Access, Thread_Body_Access (Wrapper), To_Address (T)); end if; pragma Assert (Result = 0 or else Result = EAGAIN); Succeeded := Result = 0; Set_Priority (T, Priority); Result := pthread_attr_destroy (Attributes'Access); pragma Assert (Result = 0); end Create_Task; ------------------ -- Finalize_TCB -- ------------------ procedure Finalize_TCB (T : Task_ID) is Result : Interfaces.C.int; Tmp : Task_ID := T; procedure Free is new Unchecked_Deallocation (Ada_Task_Control_Block, Task_ID); begin if not Single_Lock then Result := pthread_mutex_destroy (T.Common.LL.L'Access); pragma Assert (Result = 0); end if; Result := pthread_cond_destroy (T.Common.LL.CV'Access); pragma Assert (Result = 0); if T.Known_Tasks_Index /= -1 then Known_Tasks (T.Known_Tasks_Index) := null; end if; Free (Tmp); end Finalize_TCB; --------------- -- Exit_Task -- --------------- procedure Exit_Task is begin pthread_exit (System.Null_Address); end Exit_Task; ---------------- -- Abort_Task -- ---------------- procedure Abort_Task (T : Task_ID) is Result : Interfaces.C.int; begin Result := pthread_kill (T.Common.LL.Thread, Signal (System.Interrupt_Management.Abort_Task_Interrupt)); pragma Assert (Result = 0); end Abort_Task; ---------------- -- Check_Exit -- ---------------- -- Dummy versions. The only currently working versions is for solaris -- (native). function Check_Exit (Self_ID : ST.Task_ID) return Boolean is begin return True; end Check_Exit; -------------------- -- Check_No_Locks -- -------------------- function Check_No_Locks (Self_ID : ST.Task_ID) return Boolean is begin return True; end Check_No_Locks; ---------------------- -- Environment_Task -- ---------------------- function Environment_Task return Task_ID is begin return Environment_Task_ID; end Environment_Task; -------------- -- Lock_RTS -- -------------- procedure Lock_RTS is begin Write_Lock (Single_RTS_Lock'Access, Global_Lock => True); end Lock_RTS; ---------------- -- Unlock_RTS -- ---------------- procedure Unlock_RTS is begin Unlock (Single_RTS_Lock'Access, Global_Lock => True); end Unlock_RTS; ------------------ -- Suspend_Task -- ------------------ function Suspend_Task (T : ST.Task_ID; Thread_Self : Thread_Id) return Boolean is begin return False; end Suspend_Task; ----------------- -- Resume_Task -- ----------------- function Resume_Task (T : ST.Task_ID; Thread_Self : Thread_Id) return Boolean is begin return False; end Resume_Task; ---------------- -- Initialize -- ---------------- procedure Initialize (Environment_Task : Task_ID) is act : aliased struct_sigaction; old_act : aliased struct_sigaction; Tmp_Set : aliased sigset_t; Result : Interfaces.C.int; begin Environment_Task_ID := Environment_Task; -- Initialize the lock used to synchronize chain of all ATCBs. Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level); Enter_Task (Environment_Task); -- Install the abort-signal handler act.sa_flags := 0; act.sa_handler := Abort_Handler'Address; Result := sigemptyset (Tmp_Set'Access); pragma Assert (Result = 0); act.sa_mask := Tmp_Set; Result := sigaction ( Signal (System.Interrupt_Management.Abort_Task_Interrupt), act'Unchecked_Access, old_act'Unchecked_Access); pragma Assert (Result = 0); end Initialize; begin declare Result : Interfaces.C.int; begin -- Mask Environment task for all signals. The original mask of the -- Environment task will be recovered by Interrupt_Server task -- during the elaboration of s-interr.adb. System.Interrupt_Management.Operations.Set_Interrupt_Mask (System.Interrupt_Management.Operations.All_Tasks_Mask'Access); -- Prepare the set of signals that should unblocked in all tasks Result := sigemptyset (Unblocked_Signal_Mask'Access); pragma Assert (Result = 0); for J in Interrupt_Management.Interrupt_ID loop if System.Interrupt_Management.Keep_Unmasked (J) then Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J)); pragma Assert (Result = 0); end if; end loop; Result := pthread_key_create (ATCB_Key'Access, null); pragma Assert (Result = 0); -- Pick the highest resolution Clock for Clock_Realtime -- ??? This code currently doesn't work (see c94007[ab] for example) -- -- if syssgi (SGI_CYCLECNTR_SIZE) = 64 then -- Real_Time_Clock_Id := CLOCK_SGI_CYCLE; -- else -- Real_Time_Clock_Id := CLOCK_REALTIME; -- end if; end; end System.Task_Primitives.Operations;