------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2002-2004 Ada Core Technologies, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING. If not, write -- -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- -- MA 02111-1307, USA. -- -- -- -- As a special exception, if other files instantiate generics from this -- -- unit, or you link this unit with other files to produce an executable, -- -- this unit does not by itself cause the resulting executable to be -- -- covered by the GNU General Public License. This exception does not -- -- however invalidate any other reasons why the executable file might be -- -- covered by the GNU Public License. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Ada.Exceptions; use Ada.Exceptions; with Ada.IO_Exceptions; use Ada.IO_Exceptions; with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A; with GNAT.OS_Lib; use GNAT.OS_Lib; with GNAT.Table; package body GNAT.Perfect_Hash_Generators is -- We are using the algorithm of J. Czech as described in Zbigniew -- J. Czech, George Havas, and Bohdan S. Majewski ``An Optimal -- Algorithm for Generating Minimal Perfect Hash Functions'', -- Information Processing Letters, 43(1992) pp.257-264, Oct.1992 -- This minimal perfect hash function generator is based on random -- graphs and produces a hash function of the form: -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m -- where f1 and f2 are functions that map strings into integers, -- and g is a function that maps integers into [0, m-1]. h can be -- order preserving. For instance, let W = {w_0, ..., w_i, ..., -- w_m-1}, h can be defined such that h (w_i) = i. -- This algorithm defines two possible constructions of f1 and -- f2. Method b) stores the hash function in less memory space at -- the expense of greater CPU time. -- a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n -- size (Tk) = max (for w in W) (length (w)) * size (used char set) -- b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n -- size (Tk) = max (for w in W) (length (w)) but the table -- lookups are replaced by multiplications. -- where Tk values are randomly generated. n is defined later on -- but the algorithm recommends to use a value a little bit -- greater than 2m. Note that for large values of m, the main -- memory space requirements comes from the memory space for -- storing function g (>= 2m entries). -- Random graphs are frequently used to solve difficult problems -- that do not have polynomial solutions. This algorithm is based -- on a weighted undirected graph. It comprises two steps: mapping -- and assigment. -- In the mapping step, a graph G = (V, E) is constructed, where V -- = {0, 1, ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In -- order for the assignment step to be successful, G has to be -- acyclic. To have a high probability of generating an acyclic -- graph, n >= 2m. If it is not acyclic, Tk have to be regenerated. -- In the assignment step, the algorithm builds function g. As G -- is acyclic, there is a vertex v1 with only one neighbor v2. Let -- w_i be the word such that v1 = f1 (w_i) and v2 = f2 (w_i). Let -- g (v1) = 0 by construction and g (v2) = (i - g (v1)) mod n (or -- to be general, (h (i) - g (v1) mod n). If word w_j is such that -- v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j - g (v2)) mod n -- (or to be general, (h (j) - g (v2)) mod n). If w_i has no -- neighbor, then another vertex is selected. The algorithm -- traverses G to assign values to all the vertices. It cannot -- assign a value to an already assigned vertex as G is acyclic. subtype Word_Id is Integer; subtype Key_Id is Integer; subtype Vertex_Id is Integer; subtype Edge_Id is Integer; subtype Table_Id is Integer; No_Vertex : constant Vertex_Id := -1; No_Edge : constant Edge_Id := -1; No_Table : constant Table_Id := -1; Max_Word_Length : constant := 32; subtype Word_Type is String (1 .. Max_Word_Length); Null_Word : constant Word_Type := (others => ASCII.NUL); -- Store keyword in a word. Note that the length of word is -- limited to 32 characters. type Key_Type is record Edge : Edge_Id; end record; -- A key corresponds to an edge in the algorithm graph. type Vertex_Type is record First : Edge_Id; Last : Edge_Id; end record; -- A vertex can be involved in several edges. First and Last are -- the bounds of an array of edges stored in a global edge table. type Edge_Type is record X : Vertex_Id; Y : Vertex_Id; Key : Key_Id; end record; -- An edge is a peer of vertices. In the algorithm, a key -- is associated to an edge. package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32); package IT is new GNAT.Table (Integer, Integer, 0, 32, 32); -- The two main tables. IT is used to store several tables of -- components containing only integers. function Image (Int : Integer; W : Natural := 0) return String; function Image (Str : String; W : Natural := 0) return String; -- Return a string which includes string Str or integer Int -- preceded by leading spaces if required by width W. Output : File_Descriptor renames GNAT.OS_Lib.Standout; -- Shortcuts Max : constant := 78; Last : Natural := 0; Line : String (1 .. Max); -- Use this line to provide buffered IO procedure Add (C : Character); procedure Add (S : String); -- Add a character or a string in Line and update Last procedure Put (F : File_Descriptor; S : String; F1 : Natural; L1 : Natural; C1 : Natural; F2 : Natural; L2 : Natural; C2 : Natural); -- Write string S into file F as a element of an array of one or -- two dimensions. Fk (resp. Lk and Ck) indicates the first (resp -- last and current) index in the k-th dimension. If F1 = L1 the -- array is considered as a one dimension array. This dimension is -- described by F2 and L2. This routine takes care of all the -- parenthesis, spaces and commas needed to format correctly the -- array. Moreover, the array is well indented and is wrapped to -- fit in a 80 col line. When the line is full, the routine writes -- it into file F. When the array is completed, the routine adds a -- semi-colon and writes the line into file F. procedure New_Line (F : File_Descriptor); -- Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib procedure Put (F : File_Descriptor; S : String); -- Simulate Ada.Text_IO.Put with GNAT.OS_Lib procedure Put_Used_Char_Set (File : File_Descriptor; Title : String); -- Output a title and a used character set procedure Put_Int_Vector (File : File_Descriptor; Title : String; Root : Integer; Length : Natural); -- Output a title and a vector procedure Put_Int_Matrix (File : File_Descriptor; Title : String; Table : Table_Id); -- Output a title and a matrix. When the matrix has only one -- non-empty dimension, it is output as a vector. procedure Put_Edges (File : File_Descriptor; Title : String); -- Output a title and an edge table procedure Put_Initial_Keys (File : File_Descriptor; Title : String); -- Output a title and a key table procedure Put_Reduced_Keys (File : File_Descriptor; Title : String); -- Output a title and a key table procedure Put_Vertex_Table (File : File_Descriptor; Title : String); -- Output a title and a vertex table ---------------------------------- -- Character Position Selection -- ---------------------------------- -- We reduce the maximum key size by selecting representative -- positions in these keys. We build a matrix with one word per -- line. We fill the remaining space of a line with ASCII.NUL. The -- heuristic selects the position that induces the minimum number -- of collisions. If there are collisions, select another position -- on the reduced key set responsible of the collisions. Apply the -- heuristic until there is no more collision. procedure Apply_Position_Selection; -- Apply Position selection and build the reduced key table procedure Parse_Position_Selection (Argument : String); -- Parse Argument and compute the position set. Argument is a -- list of substrings separated by commas. Each substring -- represents a position or a range of positions (like x-y). procedure Select_Character_Set; -- Define an optimized used character set like Character'Pos in -- order not to allocate tables of 256 entries. procedure Select_Char_Position; -- Find a min char position set in order to reduce the max key -- length. The heuristic selects the position that induces the -- minimum number of collisions. If there are collisions, select -- another position on the reduced key set responsible of the -- collisions. Apply the heuristic until there is no collision. ----------------------------- -- Random Graph Generation -- ----------------------------- procedure Random (Seed : in out Natural); -- Simulate Ada.Discrete_Numerics.Random. procedure Generate_Mapping_Table (T : Table_Id; L1 : Natural; L2 : Natural; S : in out Natural); -- Random generation of the tables below. T is already allocated. procedure Generate_Mapping_Tables (Opt : Optimization; S : in out Natural); -- Generate the mapping tables T1 and T2. They are used to define : -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. -- Keys, NK and Chars are used to compute the matrix size. --------------------------- -- Algorithm Computation -- --------------------------- procedure Compute_Edges_And_Vertices (Opt : Optimization); -- Compute the edge and vertex tables. These are empty when a self -- loop is detected (f1 (w) = f2 (w)). The edge table is sorted by -- X value and then Y value. Keys is the key table and NK the -- number of keys. Chars is the set of characters really used in -- Keys. NV is the number of vertices recommended by the -- algorithm. T1 and T2 are the mapping tables needed to compute -- f1 (w) and f2 (w). function Acyclic return Boolean; -- Return True when the graph is acyclic. Vertices is the current -- vertex table and Edges the current edge table. procedure Assign_Values_To_Vertices; -- Execute the assignment step of the algorithm. Keys is the -- current key table. Vertices and Edges represent the random -- graph. G is the result of the assignment step such that: -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m function Sum (Word : Word_Type; Table : Table_Id; Opt : Optimization) return Natural; -- For an optimization of CPU_Time return -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n -- For an optimization of Memory_Space return -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n -- Here NV = n ------------------------------- -- Internal Table Management -- ------------------------------- function Allocate (N : Natural; S : Natural) return Table_Id; -- procedure Deallocate (N : Natural; S : Natural); ---------- -- Keys -- ---------- Key_Size : constant := 1; Keys : Table_Id := No_Table; NK : Natural; -- NK : Number of Keys function Initial (K : Key_Id) return Word_Id; pragma Inline (Initial); function Reduced (K : Key_Id) return Word_Id; pragma Inline (Reduced); function Get_Key (F : Key_Id) return Key_Type; procedure Set_Key (F : Key_Id; Item : Key_Type); -- Comments needed here ??? ------------------ -- Char_Pos_Set -- ------------------ Char_Pos_Size : constant := 1; Char_Pos_Set : Table_Id := No_Table; Char_Pos_Set_Len : Natural; -- Character Selected Position Set function Get_Char_Pos (P : Natural) return Natural; procedure Set_Char_Pos (P : Natural; Item : Natural); -- Comments needed here ??? ------------------- -- Used_Char_Set -- ------------------- Used_Char_Size : constant := 1; Used_Char_Set : Table_Id := No_Table; Used_Char_Set_Len : Natural; -- Used Character Set : Define a new character mapping. When all -- the characters are not present in the keys, in order to reduce -- the size of some tables, we redefine the character mapping. function Get_Used_Char (C : Character) return Natural; procedure Set_Used_Char (C : Character; Item : Natural); ------------------- -- Random Tables -- ------------------- Rand_Tab_Item_Size : constant := 1; T1 : Table_Id := No_Table; T2 : Table_Id := No_Table; Rand_Tab_Len_1 : Natural; Rand_Tab_Len_2 : Natural; -- T1 : Values table to compute F1 -- T2 : Values table to compute F2 function Get_Rand_Tab (T : Integer; X, Y : Natural) return Natural; procedure Set_Rand_Tab (T : Integer; X, Y : Natural; Item : Natural); ------------------ -- Random Graph -- ------------------ Graph_Item_Size : constant := 1; G : Table_Id := No_Table; Graph_Len : Natural; -- G : Values table to compute G function Get_Graph (F : Natural) return Integer; procedure Set_Graph (F : Natural; Item : Integer); -- Comments needed ??? ----------- -- Edges -- ----------- Edge_Size : constant := 3; Edges : Table_Id := No_Table; Edges_Len : Natural; -- Edges : Edge table of the random graph G function Get_Edges (F : Natural) return Edge_Type; procedure Set_Edges (F : Natural; Item : Edge_Type); -------------- -- Vertices -- -------------- Vertex_Size : constant := 2; Vertices : Table_Id := No_Table; -- Vertex table of the random graph G NV : Natural; -- Number of Vertices function Get_Vertices (F : Natural) return Vertex_Type; procedure Set_Vertices (F : Natural; Item : Vertex_Type); -- Comments needed ??? K2V : Float; -- Ratio between Keys and Vertices (parameter of Czech's algorithm) Opt : Optimization; -- Optimization mode (memory vs CPU) MKL : Natural; -- Maximum of all the word length S : Natural; -- Seed function Type_Size (L : Natural) return Natural; -- Given the last L of an unsigned integer type T, return its size ------------- -- Acyclic -- ------------- function Acyclic return Boolean is Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex); function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean; -- Propagate Mark from X to Y. X is already marked. Mark Y and -- propagate it to the edges of Y except the one representing -- the same key. Return False when Y is marked with Mark. -------------- -- Traverse -- -------------- function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean is E : constant Edge_Type := Get_Edges (Edge); K : constant Key_Id := E.Key; Y : constant Vertex_Id := E.Y; M : constant Vertex_Id := Marks (E.Y); V : Vertex_Type; begin if M = Mark then return False; elsif M = No_Vertex then Marks (Y) := Mark; V := Get_Vertices (Y); for J in V.First .. V.Last loop -- Do not propagate to the edge representing the same key. if Get_Edges (J).Key /= K and then not Traverse (J, Mark) then return False; end if; end loop; end if; return True; end Traverse; Edge : Edge_Type; -- Start of processing for Acyclic begin -- Edges valid range is for J in 1 .. Edges_Len - 1 loop Edge := Get_Edges (J); -- Mark X of E when it has not been already done if Marks (Edge.X) = No_Vertex then Marks (Edge.X) := Edge.X; end if; -- Traverse E when this has not already been done if Marks (Edge.Y) = No_Vertex and then not Traverse (J, Edge.X) then return False; end if; end loop; return True; end Acyclic; --------- -- Add -- --------- procedure Add (C : Character) is begin Line (Last + 1) := C; Last := Last + 1; end Add; --------- -- Add -- --------- procedure Add (S : String) is Len : constant Natural := S'Length; begin Line (Last + 1 .. Last + Len) := S; Last := Last + Len; end Add; -------------- -- Allocate -- -------------- function Allocate (N : Natural; S : Natural) return Table_Id is L : constant Integer := IT.Last; begin IT.Set_Last (L + N * S); return L + 1; end Allocate; ------------------------------ -- Apply_Position_Selection -- ------------------------------ procedure Apply_Position_Selection is begin WT.Set_Last (2 * NK - 1); for J in 0 .. NK - 1 loop declare I_Word : constant Word_Type := WT.Table (Initial (J)); R_Word : Word_Type := Null_Word; Index : Natural := I_Word'First - 1; begin -- Select the characters of Word included in the -- position selection. for C in 0 .. Char_Pos_Set_Len - 1 loop exit when I_Word (Get_Char_Pos (C)) = ASCII.NUL; Index := Index + 1; R_Word (Index) := I_Word (Get_Char_Pos (C)); end loop; -- Build the new table with the reduced word WT.Table (Reduced (J)) := R_Word; Set_Key (J, (Edge => No_Edge)); end; end loop; end Apply_Position_Selection; ------------- -- Compute -- ------------- procedure Compute (Position : String := Default_Position) is begin Keys := Allocate (NK, Key_Size); if Verbose then Put_Initial_Keys (Output, "Initial Key Table"); end if; if Position'Length /= 0 then Parse_Position_Selection (Position); else Select_Char_Position; end if; if Verbose then Put_Int_Vector (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len); end if; Apply_Position_Selection; if Verbose then Put_Reduced_Keys (Output, "Reduced Keys Table"); end if; Select_Character_Set; if Verbose then Put_Used_Char_Set (Output, "Character Position Table"); end if; -- Perform Czech's algorithm loop Generate_Mapping_Tables (Opt, S); Compute_Edges_And_Vertices (Opt); -- When graph is not empty (no self-loop from previous -- operation) and not acyclic. exit when 0 < Edges_Len and then Acyclic; end loop; Assign_Values_To_Vertices; end Compute; ------------------------------- -- Assign_Values_To_Vertices -- ------------------------------- procedure Assign_Values_To_Vertices is X : Vertex_Id; procedure Assign (X : Vertex_Id); -- Execute assignment on X's neighbors except the vertex that -- we are coming from which is already assigned. ------------ -- Assign -- ------------ procedure Assign (X : Vertex_Id) is E : Edge_Type; V : constant Vertex_Type := Get_Vertices (X); begin for J in V.First .. V.Last loop E := Get_Edges (J); if Get_Graph (E.Y) = -1 then Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK); Assign (E.Y); end if; end loop; end Assign; -- Start of processing for Assign_Values_To_Vertices begin -- Value -1 denotes an unitialized value as it is supposed to -- be in the range 0 .. NK. if G = No_Table then Graph_Len := NV; G := Allocate (Graph_Len, Graph_Item_Size); end if; for J in 0 .. Graph_Len - 1 loop Set_Graph (J, -1); end loop; for K in 0 .. NK - 1 loop X := Get_Edges (Get_Key (K).Edge).X; if Get_Graph (X) = -1 then Set_Graph (X, 0); Assign (X); end if; end loop; for J in 0 .. Graph_Len - 1 loop if Get_Graph (J) = -1 then Set_Graph (J, 0); end if; end loop; if Verbose then Put_Int_Vector (Output, "Assign Values To Vertices", G, Graph_Len); end if; end Assign_Values_To_Vertices; -------------------------------- -- Compute_Edges_And_Vertices -- -------------------------------- procedure Compute_Edges_And_Vertices (Opt : Optimization) is X : Natural; Y : Natural; Key : Key_Type; Edge : Edge_Type; Vertex : Vertex_Type; Not_Acyclic : Boolean := False; procedure Move (From : Natural; To : Natural); function Lt (L, R : Natural) return Boolean; -- Subprograms needed for GNAT.Heap_Sort_A ---------- -- Move -- ---------- procedure Move (From : Natural; To : Natural) is begin Set_Edges (To, Get_Edges (From)); end Move; -------- -- Lt -- -------- function Lt (L, R : Natural) return Boolean is EL : constant Edge_Type := Get_Edges (L); ER : constant Edge_Type := Get_Edges (R); begin return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y); end Lt; -- Start of processing for Compute_Edges_And_Vertices begin -- We store edges from 1 to 2 * NK and leave -- zero alone in order to use GNAT.Heap_Sort_A. Edges_Len := 2 * NK + 1; if Edges = No_Table then Edges := Allocate (Edges_Len, Edge_Size); end if; if Vertices = No_Table then Vertices := Allocate (NV, Vertex_Size); end if; for J in 0 .. NV - 1 loop Set_Vertices (J, (No_Vertex, No_Vertex - 1)); end loop; -- For each w, X = f1 (w) and Y = f2 (w) for J in 0 .. NK - 1 loop Key := Get_Key (J); Key.Edge := No_Edge; Set_Key (J, Key); X := Sum (WT.Table (Reduced (J)), T1, Opt); Y := Sum (WT.Table (Reduced (J)), T2, Opt); -- Discard T1 and T2 as soon as we discover a self loop if X = Y then Not_Acyclic := True; exit; end if; -- We store (X, Y) and (Y, X) to ease assignment step Set_Edges (2 * J + 1, (X, Y, J)); Set_Edges (2 * J + 2, (Y, X, J)); end loop; -- Return an empty graph when self loop detected if Not_Acyclic then Edges_Len := 0; else if Verbose then Put_Edges (Output, "Unsorted Edge Table"); Put_Int_Matrix (Output, "Function Table 1", T1); Put_Int_Matrix (Output, "Function Table 2", T2); end if; -- Enforce consistency between edges and keys. Construct -- Vertices and compute the list of neighbors of a vertex -- First .. Last as Edges is sorted by X and then Y. To -- compute the neighbor list, sort the edges. Sort (Edges_Len - 1, Move'Unrestricted_Access, Lt'Unrestricted_Access); if Verbose then Put_Edges (Output, "Sorted Edge Table"); Put_Int_Matrix (Output, "Function Table 1", T1); Put_Int_Matrix (Output, "Function Table 2", T2); end if; -- Edges valid range is 1 .. 2 * NK for E in 1 .. Edges_Len - 1 loop Edge := Get_Edges (E); Key := Get_Key (Edge.Key); if Key.Edge = No_Edge then Key.Edge := E; Set_Key (Edge.Key, Key); end if; Vertex := Get_Vertices (Edge.X); if Vertex.First = No_Edge then Vertex.First := E; end if; Vertex.Last := E; Set_Vertices (Edge.X, Vertex); end loop; if Verbose then Put_Reduced_Keys (Output, "Key Table"); Put_Edges (Output, "Edge Table"); Put_Vertex_Table (Output, "Vertex Table"); end if; end if; end Compute_Edges_And_Vertices; ------------ -- Define -- ------------ procedure Define (Name : Table_Name; Item_Size : out Natural; Length_1 : out Natural; Length_2 : out Natural) is begin case Name is when Character_Position => Item_Size := 8; Length_1 := Char_Pos_Set_Len; Length_2 := 0; when Used_Character_Set => Item_Size := 8; Length_1 := 256; Length_2 := 0; when Function_Table_1 | Function_Table_2 => Item_Size := Type_Size (NV); Length_1 := Rand_Tab_Len_1; Length_2 := Rand_Tab_Len_2; when Graph_Table => Item_Size := Type_Size (NK); Length_1 := NV; Length_2 := 0; end case; end Define; -------------- -- Finalize -- -------------- procedure Finalize is begin WT.Release; IT.Release; Keys := No_Table; NK := 0; Char_Pos_Set := No_Table; Char_Pos_Set_Len := 0; Used_Char_Set := No_Table; Used_Char_Set_Len := 0; T1 := No_Table; T2 := No_Table; Rand_Tab_Len_1 := 0; Rand_Tab_Len_2 := 0; G := No_Table; Graph_Len := 0; Edges := No_Table; Edges_Len := 0; Vertices := No_Table; NV := 0; end Finalize; ---------------------------- -- Generate_Mapping_Table -- ---------------------------- procedure Generate_Mapping_Table (T : Integer; L1 : Natural; L2 : Natural; S : in out Natural) is begin for J in 0 .. L1 - 1 loop for K in 0 .. L2 - 1 loop Random (S); Set_Rand_Tab (T, J, K, S mod NV); end loop; end loop; end Generate_Mapping_Table; ----------------------------- -- Generate_Mapping_Tables -- ----------------------------- procedure Generate_Mapping_Tables (Opt : Optimization; S : in out Natural) is begin -- If T1 and T2 are already allocated no need to do it -- twice. Reuse them as their size has not changes. if T1 = No_Table and then T2 = No_Table then declare Used_Char_Last : Natural := 0; Used_Char : Natural; begin if Opt = CPU_Time then for P in reverse Character'Range loop Used_Char := Get_Used_Char (P); if Used_Char /= 0 then Used_Char_Last := Used_Char; exit; end if; end loop; end if; Rand_Tab_Len_1 := Char_Pos_Set_Len; Rand_Tab_Len_2 := Used_Char_Last + 1; T1 := Allocate (Rand_Tab_Len_1 * Rand_Tab_Len_2, Rand_Tab_Item_Size); T2 := Allocate (Rand_Tab_Len_1 * Rand_Tab_Len_2, Rand_Tab_Item_Size); end; end if; Generate_Mapping_Table (T1, Rand_Tab_Len_1, Rand_Tab_Len_2, S); Generate_Mapping_Table (T2, Rand_Tab_Len_1, Rand_Tab_Len_2, S); if Verbose then Put_Used_Char_Set (Output, "Used Character Set"); Put_Int_Matrix (Output, "Function Table 1", T1); Put_Int_Matrix (Output, "Function Table 2", T2); end if; end Generate_Mapping_Tables; ------------------ -- Get_Char_Pos -- ------------------ function Get_Char_Pos (P : Natural) return Natural is N : constant Natural := Char_Pos_Set + P; begin return IT.Table (N); end Get_Char_Pos; --------------- -- Get_Edges -- --------------- function Get_Edges (F : Natural) return Edge_Type is N : constant Natural := Edges + (F * Edge_Size); E : Edge_Type; begin E.X := IT.Table (N); E.Y := IT.Table (N + 1); E.Key := IT.Table (N + 2); return E; end Get_Edges; --------------- -- Get_Graph -- --------------- function Get_Graph (F : Natural) return Integer is N : constant Natural := G + F * Graph_Item_Size; begin return IT.Table (N); end Get_Graph; ------------- -- Get_Key -- ------------- function Get_Key (F : Key_Id) return Key_Type is N : constant Natural := Keys + F * Key_Size; K : Key_Type; begin K.Edge := IT.Table (N); return K; end Get_Key; ------------------ -- Get_Rand_Tab -- ------------------ function Get_Rand_Tab (T : Integer; X, Y : Natural) return Natural is N : constant Natural := T + ((Y * Rand_Tab_Len_1) + X) * Rand_Tab_Item_Size; begin return IT.Table (N); end Get_Rand_Tab; ------------------- -- Get_Used_Char -- ------------------- function Get_Used_Char (C : Character) return Natural is N : constant Natural := Used_Char_Set + Character'Pos (C) * Used_Char_Size; begin return IT.Table (N); end Get_Used_Char; ------------------ -- Get_Vertices -- ------------------ function Get_Vertices (F : Natural) return Vertex_Type is N : constant Natural := Vertices + (F * Vertex_Size); V : Vertex_Type; begin V.First := IT.Table (N); V.Last := IT.Table (N + 1); return V; end Get_Vertices; ----------- -- Image -- ----------- function Image (Int : Integer; W : Natural := 0) return String is B : String (1 .. 32); L : Natural := 0; procedure Img (V : Natural); -- Compute image of V into B, starting at B (L), incrementing L --------- -- Img -- --------- procedure Img (V : Natural) is begin if V > 9 then Img (V / 10); end if; L := L + 1; B (L) := Character'Val ((V mod 10) + Character'Pos ('0')); end Img; -- Start of processing for Image begin if Int < 0 then L := L + 1; B (L) := '-'; Img (-Int); else Img (Int); end if; return Image (B (1 .. L), W); end Image; ----------- -- Image -- ----------- function Image (Str : String; W : Natural := 0) return String is Len : constant Natural := Str'Length; Max : Natural := Len; begin if Max < W then Max := W; end if; declare Buf : String (1 .. Max) := (1 .. Max => ' '); begin for J in 0 .. Len - 1 loop Buf (Max - Len + 1 + J) := Str (Str'First + J); end loop; return Buf; end; end Image; ------------- -- Initial -- ------------- function Initial (K : Key_Id) return Word_Id is begin return K; end Initial; ---------------- -- Initialize -- ---------------- procedure Initialize (Seed : Natural; K_To_V : Float := Default_K_To_V; Optim : Optimization := CPU_Time) is begin WT.Init; IT.Init; S := Seed; Keys := No_Table; NK := 0; Char_Pos_Set := No_Table; Char_Pos_Set_Len := 0; K2V := K_To_V; Opt := Optim; MKL := 0; end Initialize; ------------ -- Insert -- ------------ procedure Insert (Value : String) is Word : Word_Type := Null_Word; Len : constant Natural := Value'Length; begin Word (1 .. Len) := Value (Value'First .. Value'First + Len - 1); WT.Set_Last (NK); WT.Table (NK) := Word; NK := NK + 1; NV := Natural (Float (NK) * K2V); if MKL < Len then MKL := Len; end if; end Insert; -------------- -- New_Line -- -------------- procedure New_Line (F : File_Descriptor) is EOL : constant Character := ASCII.LF; begin if Write (F, EOL'Address, 1) /= 1 then raise Program_Error; end if; end New_Line; ------------------------------ -- Parse_Position_Selection -- ------------------------------ procedure Parse_Position_Selection (Argument : String) is N : Natural := Argument'First; L : constant Natural := Argument'Last; M : constant Natural := MKL; T : array (1 .. M) of Boolean := (others => False); function Parse_Index return Natural; -- Parse argument starting at index N to find an index ----------------- -- Parse_Index -- ----------------- function Parse_Index return Natural is C : Character := Argument (N); V : Natural := 0; begin if C = '$' then N := N + 1; return M; end if; if C not in '0' .. '9' then Raise_Exception (Program_Error'Identity, "cannot read position argument"); end if; while C in '0' .. '9' loop V := V * 10 + (Character'Pos (C) - Character'Pos ('0')); N := N + 1; exit when L < N; C := Argument (N); end loop; return V; end Parse_Index; -- Start of processing for Parse_Position_Selection begin Char_Pos_Set_Len := 2 * NK; -- Empty specification means all the positions if L < N then Char_Pos_Set_Len := M; Char_Pos_Set := Allocate (Char_Pos_Set_Len, Char_Pos_Size); for C in 0 .. Char_Pos_Set_Len - 1 loop Set_Char_Pos (C, C + 1); end loop; else loop declare First, Last : Natural; begin First := Parse_Index; Last := First; -- Detect a range if N <= L and then Argument (N) = '-' then N := N + 1; Last := Parse_Index; end if; -- Include the positions in the selection for J in First .. Last loop T (J) := True; end loop; end; exit when L < N; if Argument (N) /= ',' then Raise_Exception (Program_Error'Identity, "cannot read position argument"); end if; N := N + 1; end loop; -- Compute position selection length N := 0; for J in T'Range loop if T (J) then N := N + 1; end if; end loop; -- Fill position selection Char_Pos_Set_Len := N; Char_Pos_Set := Allocate (Char_Pos_Set_Len, Char_Pos_Size); N := 0; for J in T'Range loop if T (J) then Set_Char_Pos (N, J); N := N + 1; end if; end loop; end if; end Parse_Position_Selection; ------------- -- Produce -- ------------- procedure Produce (Pkg_Name : String := Default_Pkg_Name) is File : File_Descriptor; Status : Boolean; -- For call to Close; function Type_Img (L : Natural) return String; -- Return the larger unsigned type T such that T'Last < L function Range_Img (F, L : Natural; T : String := "") return String; -- Return string "[T range ]F .. L" function Array_Img (N, T, R1 : String; R2 : String := "") return String; -- Return string "N : constant array (R1[, R2]) of T;" -------------- -- Type_Img -- -------------- function Type_Img (L : Natural) return String is S : constant String := Image (Type_Size (L)); U : String := "Unsigned_ "; N : Natural := 9; begin for J in S'Range loop N := N + 1; U (N) := S (J); end loop; return U (1 .. N); end Type_Img; --------------- -- Range_Img -- --------------- function Range_Img (F, L : Natural; T : String := "") return String is FI : constant String := Image (F); FL : constant Natural := FI'Length; LI : constant String := Image (L); LL : constant Natural := LI'Length; TL : constant Natural := T'Length; RI : String (1 .. TL + 7 + FL + 4 + LL); Len : Natural := 0; begin if TL /= 0 then RI (Len + 1 .. Len + TL) := T; Len := Len + TL; RI (Len + 1 .. Len + 7) := " range "; Len := Len + 7; end if; RI (Len + 1 .. Len + FL) := FI; Len := Len + FL; RI (Len + 1 .. Len + 4) := " .. "; Len := Len + 4; RI (Len + 1 .. Len + LL) := LI; Len := Len + LL; return RI (1 .. Len); end Range_Img; --------------- -- Array_Img -- --------------- function Array_Img (N, T, R1 : String; R2 : String := "") return String is begin Last := 0; Add (" "); Add (N); Add (" : constant array ("); Add (R1); if R2 /= "" then Add (", "); Add (R2); end if; Add (") of "); Add (T); Add (" :="); return Line (1 .. Last); end Array_Img; F : Natural; L : Natural; P : Natural; PLen : constant Natural := Pkg_Name'Length; FName : String (1 .. PLen + 4); -- Start of processing for Produce begin FName (1 .. PLen) := Pkg_Name; for J in 1 .. PLen loop if FName (J) in 'A' .. 'Z' then FName (J) := Character'Val (Character'Pos (FName (J)) - Character'Pos ('A') + Character'Pos ('a')); elsif FName (J) = '.' then FName (J) := '-'; end if; end loop; FName (PLen + 1 .. PLen + 4) := ".ads"; File := Create_File (FName, Text); Put (File, "package "); Put (File, Pkg_Name); Put (File, " is"); New_Line (File); Put (File, " function Hash (S : String) return Natural;"); New_Line (File); Put (File, "end "); Put (File, Pkg_Name); Put (File, ";"); New_Line (File); Close (File, Status); if not Status then raise Device_Error; end if; FName (PLen + 4) := 'b'; File := Create_File (FName, Text); Put (File, "with Interfaces; use Interfaces;"); New_Line (File); New_Line (File); Put (File, "package body "); Put (File, Pkg_Name); Put (File, " is"); New_Line (File); New_Line (File); if Opt = CPU_Time then Put (File, Array_Img ("C", Type_Img (256), "Character")); New_Line (File); F := Character'Pos (Character'First); L := Character'Pos (Character'Last); for J in Character'Range loop P := Get_Used_Char (J); Put (File, Image (P), 0, 0, 0, F, L, Character'Pos (J)); end loop; New_Line (File); end if; F := 0; L := Char_Pos_Set_Len - 1; Put (File, Array_Img ("P", "Natural", Range_Img (F, L))); New_Line (File); for J in F .. L loop Put (File, Image (Get_Char_Pos (J)), 0, 0, 0, F, L, J); end loop; New_Line (File); if Opt = CPU_Time then Put_Int_Matrix (File, Array_Img ("T1", Type_Img (NV), Range_Img (0, Rand_Tab_Len_1 - 1), Range_Img (0, Rand_Tab_Len_2 - 1, Type_Img (256))), T1); else Put_Int_Matrix (File, Array_Img ("T1", Type_Img (NV), Range_Img (0, Rand_Tab_Len_1 - 1)), T1); end if; New_Line (File); if Opt = CPU_Time then Put_Int_Matrix (File, Array_Img ("T2", Type_Img (NV), Range_Img (0, Rand_Tab_Len_1 - 1), Range_Img (0, Rand_Tab_Len_2 - 1, Type_Img (256))), T2); else Put_Int_Matrix (File, Array_Img ("T2", Type_Img (NV), Range_Img (0, Rand_Tab_Len_1 - 1)), T2); end if; New_Line (File); Put_Int_Vector (File, Array_Img ("G", Type_Img (NK), Range_Img (0, Graph_Len - 1)), G, Graph_Len); New_Line (File); Put (File, " function Hash (S : String) return Natural is"); New_Line (File); Put (File, " F : constant Natural := S'First - 1;"); New_Line (File); Put (File, " L : constant Natural := S'Length;"); New_Line (File); Put (File, " F1, F2 : Natural := 0;"); New_Line (File); Put (File, " J : "); if Opt = CPU_Time then Put (File, Type_Img (256)); else Put (File, "Natural"); end if; Put (File, ";"); New_Line (File); Put (File, " begin"); New_Line (File); Put (File, " for K in P'Range loop"); New_Line (File); Put (File, " exit when L < P (K);"); New_Line (File); Put (File, " J := "); if Opt = CPU_Time then Put (File, "C"); else Put (File, "Character'Pos"); end if; Put (File, " (S (P (K) + F));"); New_Line (File); Put (File, " F1 := (F1 + Natural (T1 (K"); if Opt = CPU_Time then Put (File, ", J"); end if; Put (File, "))"); if Opt = Memory_Space then Put (File, " * J"); end if; Put (File, ") mod "); Put (File, Image (NV)); Put (File, ";"); New_Line (File); Put (File, " F2 := (F2 + Natural (T2 (K"); if Opt = CPU_Time then Put (File, ", J"); end if; Put (File, "))"); if Opt = Memory_Space then Put (File, " * J"); end if; Put (File, ") mod "); Put (File, Image (NV)); Put (File, ";"); New_Line (File); Put (File, " end loop;"); New_Line (File); Put (File, " return (Natural (G (F1)) + Natural (G (F2))) mod "); Put (File, Image (NK)); Put (File, ";"); New_Line (File); Put (File, " end Hash;"); New_Line (File); New_Line (File); Put (File, "end "); Put (File, Pkg_Name); Put (File, ";"); New_Line (File); Close (File, Status); if not Status then raise Device_Error; end if; end Produce; --------- -- Put -- --------- procedure Put (F : File_Descriptor; S : String) is Len : constant Natural := S'Length; begin if Write (F, S'Address, Len) /= Len then raise Program_Error; end if; end Put; --------- -- Put -- --------- procedure Put (F : File_Descriptor; S : String; F1 : Natural; L1 : Natural; C1 : Natural; F2 : Natural; L2 : Natural; C2 : Natural) is Len : constant Natural := S'Length; procedure Flush; ----------- -- Flush -- ----------- procedure Flush is begin Put (F, Line (1 .. Last)); New_Line (F); Last := 0; end Flush; -- Start of processing for Put begin if C1 = F1 and then C2 = F2 then Last := 0; end if; if Last + Len + 3 > Max then Flush; end if; if Last = 0 then Line (Last + 1 .. Last + 5) := " "; Last := Last + 5; if F1 /= L1 then if C1 = F1 and then C2 = F2 then Add ('('); else Add (' '); end if; end if; end if; if C2 = F2 then Add ('('); else Add (' '); end if; Line (Last + 1 .. Last + Len) := S; Last := Last + Len; if C2 = L2 then Add (')'); if F1 = L1 then Add (';'); Flush; elsif C1 /= L1 then Add (','); Flush; else Add (')'); Add (';'); Flush; end if; else Add (','); end if; end Put; ----------------------- -- Put_Used_Char_Set -- ----------------------- procedure Put_Used_Char_Set (File : File_Descriptor; Title : String) is F : constant Natural := Character'Pos (Character'First); L : constant Natural := Character'Pos (Character'Last); begin Put (File, Title); New_Line (File); for J in Character'Range loop Put (File, Image (Get_Used_Char (J)), 0, 0, 0, F, L, Character'Pos (J)); end loop; end Put_Used_Char_Set; ---------- -- Put -- ---------- procedure Put_Int_Matrix (File : File_Descriptor; Title : String; Table : Integer) is F1 : constant Natural := 0; L1 : constant Natural := Rand_Tab_Len_1 - 1; F2 : constant Natural := 0; L2 : constant Natural := Rand_Tab_Len_2 - 1; begin Put (File, Title); New_Line (File); if L2 = F2 then for J in F1 .. L1 loop Put (File, Image (Get_Rand_Tab (Table, J, F2)), 0, 0, 0, F1, L1, J); end loop; else for J in F1 .. L1 loop for K in F2 .. L2 loop Put (File, Image (Get_Rand_Tab (Table, J, K)), F1, L1, J, F2, L2, K); end loop; end loop; end if; end Put_Int_Matrix; -------------------- -- Put_Int_Vector -- -------------------- procedure Put_Int_Vector (File : File_Descriptor; Title : String; Root : Integer; Length : Natural) is F2 : constant Natural := 0; L2 : constant Natural := Length - 1; begin Put (File, Title); New_Line (File); for J in F2 .. L2 loop Put (File, Image (IT.Table (Root + J)), 0, 0, 0, F2, L2, J); end loop; end Put_Int_Vector; --------------- -- Put_Edges -- --------------- procedure Put_Edges (File : File_Descriptor; Title : String) is E : Edge_Type; F1 : constant Natural := 1; L1 : constant Natural := Edges_Len - 1; M : constant Natural := Max / 5; begin Put (File, Title); New_Line (File); -- Edges valid range is 1 .. Edge_Len - 1 for J in F1 .. L1 loop E := Get_Edges (J); Put (File, Image (J, M), F1, L1, J, 1, 4, 1); Put (File, Image (E.X, M), F1, L1, J, 1, 4, 2); Put (File, Image (E.Y, M), F1, L1, J, 1, 4, 3); Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4); end loop; end Put_Edges; --------------------------- -- Put_Initial_Keys -- --------------------------- procedure Put_Initial_Keys (File : File_Descriptor; Title : String) is F1 : constant Natural := 0; L1 : constant Natural := NK - 1; M : constant Natural := Max / 5; K : Key_Type; begin Put (File, Title); New_Line (File); for J in F1 .. L1 loop K := Get_Key (J); Put (File, Image (J, M), F1, L1, J, 1, 3, 1); Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2); Put (File, WT.Table (Initial (J)), F1, L1, J, 1, 3, 3); end loop; end Put_Initial_Keys; --------------------------- -- Put_Reduced_Keys -- --------------------------- procedure Put_Reduced_Keys (File : File_Descriptor; Title : String) is F1 : constant Natural := 0; L1 : constant Natural := NK - 1; M : constant Natural := Max / 5; K : Key_Type; begin Put (File, Title); New_Line (File); for J in F1 .. L1 loop K := Get_Key (J); Put (File, Image (J, M), F1, L1, J, 1, 3, 1); Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2); Put (File, WT.Table (Reduced (J)), F1, L1, J, 1, 3, 3); end loop; end Put_Reduced_Keys; ---------------------- -- Put_Vertex_Table -- ---------------------- procedure Put_Vertex_Table (File : File_Descriptor; Title : String) is F1 : constant Natural := 0; L1 : constant Natural := NV - 1; M : constant Natural := Max / 4; V : Vertex_Type; begin Put (File, Title); New_Line (File); for J in F1 .. L1 loop V := Get_Vertices (J); Put (File, Image (J, M), F1, L1, J, 1, 3, 1); Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2); Put (File, Image (V.Last, M), F1, L1, J, 1, 3, 3); end loop; end Put_Vertex_Table; ------------ -- Random -- ------------ procedure Random (Seed : in out Natural) is -- Park & Miller Standard Minimal using Schrage's algorithm to -- avoid overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1) R : Natural; Q : Natural; X : Integer; begin R := Seed mod 127773; Q := Seed / 127773; X := 16807 * R - 2836 * Q; if X < 0 then Seed := X + 2147483647; else Seed := X; end if; end Random; ------------- -- Reduced -- ------------- function Reduced (K : Key_Id) return Word_Id is begin return K + NK; end Reduced; -------------------------- -- Select_Character_Set -- -------------------------- procedure Select_Character_Set is Last : Natural := 0; Used : array (Character) of Boolean := (others => False); begin for J in 0 .. NK - 1 loop for K in 1 .. Max_Word_Length loop exit when WT.Table (Initial (J))(K) = ASCII.NUL; Used (WT.Table (Initial (J))(K)) := True; end loop; end loop; Used_Char_Set_Len := 256; Used_Char_Set := Allocate (Used_Char_Set_Len, Used_Char_Size); for J in Used'Range loop if Used (J) then Set_Used_Char (J, Last); Last := Last + 1; else Set_Used_Char (J, 0); end if; end loop; end Select_Character_Set; -------------------------- -- Select_Char_Position -- -------------------------- procedure Select_Char_Position is type Vertex_Table_Type is array (Natural range <>) of Vertex_Type; procedure Build_Identical_Keys_Sets (Table : in out Vertex_Table_Type; Last : in out Natural; Pos : in Natural); -- Build a list of keys subsets that are identical with the -- current position selection plus Pos. Once this routine is -- called, reduced words are sorted by subsets and each item -- (First, Last) in Sets defines the range of identical keys. function Count_Identical_Keys (Table : Vertex_Table_Type; Last : Natural; Pos : Natural) return Natural; -- For each subset in Sets, count the number of identical keys -- if we add Pos to the current position selection. Sel_Position : IT.Table_Type (1 .. MKL); Last_Sel_Pos : Natural := 0; ------------------------------- -- Build_Identical_Keys_Sets -- ------------------------------- procedure Build_Identical_Keys_Sets (Table : in out Vertex_Table_Type; Last : in out Natural; Pos : in Natural) is S : constant Vertex_Table_Type := Table (1 .. Last); C : constant Natural := Pos; -- Shortcuts F : Integer; L : Integer; -- First and last words of a subset begin Last := 0; -- For each subset in S, extract the new subsets we have by -- adding C in the position selection. for J in S'Range loop declare Offset : Natural; -- GNAT.Heap_Sort assumes that the first array index -- is 1. Offset defines the translation to operate. procedure Move (From : Natural; To : Natural); function Lt (L, R : Natural) return Boolean; -- Subprograms needed by GNAT.Heap_Sort_A ---------- -- Move -- ---------- procedure Move (From : Natural; To : Natural) is Target, Source : Natural; begin if From = 0 then Source := 0; Target := Offset + To; elsif To = 0 then Source := Offset + From; Target := 0; else Source := Offset + From; Target := Offset + To; end if; WT.Table (Reduced (Target)) := WT.Table (Reduced (Source)); end Move; -------- -- Lt -- -------- function Lt (L, R : Natural) return Boolean is C : constant Natural := Pos; Left : Natural; Right : Natural; begin if L = 0 then Left := 0; Right := Offset + R; elsif R = 0 then Left := Offset + L; Right := 0; else Left := Offset + L; Right := Offset + R; end if; return WT.Table (Reduced (Left))(C) < WT.Table (Reduced (Right))(C); end Lt; -- Start of processing for Build_Identical_Key_Sets begin Offset := S (J).First - 1; Sort (S (J).Last - S (J).First + 1, Move'Unrestricted_Access, Lt'Unrestricted_Access); F := -1; L := -1; for N in S (J).First .. S (J).Last - 1 loop -- Two contiguous words are identical if WT.Table (Reduced (N))(C) = WT.Table (Reduced (N + 1))(C) then -- This is the first word of the subset if F = -1 then F := N; end if; L := N + 1; -- This is the last word of the subset elsif F /= -1 then Last := Last + 1; Table (Last) := (F, L); F := -1; end if; end loop; -- This is the last word of the subset and of the set if F /= -1 then Last := Last + 1; Table (Last) := (F, L); end if; end; end loop; end Build_Identical_Keys_Sets; -------------------------- -- Count_Identical_Keys -- -------------------------- function Count_Identical_Keys (Table : Vertex_Table_Type; Last : Natural; Pos : Natural) return Natural is N : array (Character) of Natural; C : Character; T : Natural := 0; begin -- For each subset, count the number of words that are still -- identical when we include Sel_Position (Last_Sel_Pos) in -- the position selection. Only focus on this position as the -- other positions already produce identical keys. for S in 1 .. Last loop -- Count the occurrences of the different characters N := (others => 0); for K in Table (S).First .. Table (S).Last loop C := WT.Table (Reduced (K))(Pos); N (C) := N (C) + 1; end loop; -- Add to the total when there are two identical keys for J in N'Range loop if N (J) > 1 then T := T + N (J); end if; end loop; end loop; return T; end Count_Identical_Keys; -- Start of processing for Select_Char_Position begin for C in Sel_Position'Range loop Sel_Position (C) := C; end loop; -- Initialization of Words WT.Set_Last (2 * NK - 1); for K in 0 .. NK - 1 loop WT.Table (Reduced (K) + 1) := WT.Table (Initial (K)); end loop; declare Collisions : Natural; Min_Collisions : Natural := NK; Old_Collisions : Natural; Min_Coll_Sel_Pos : Natural := 0; -- init to kill warning Min_Coll_Sel_Pos_Idx : Natural := 0; -- init to kill warning Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK); Same_Keys_Sets_Last : Natural := 1; begin Same_Keys_Sets_Table (1) := (1, NK); loop -- Preserve minimum identical keys and check later on -- that this value is strictly decrementing. Otherwise, -- it means that two keys are stricly identical. Old_Collisions := Min_Collisions; -- Find which position reduces the most of collisions for J in Last_Sel_Pos + 1 .. Sel_Position'Last loop Collisions := Count_Identical_Keys (Same_Keys_Sets_Table, Same_Keys_Sets_Last, Sel_Position (J)); if Collisions < Min_Collisions then Min_Collisions := Collisions; Min_Coll_Sel_Pos := Sel_Position (J); Min_Coll_Sel_Pos_Idx := J; end if; end loop; if Old_Collisions = Min_Collisions then Raise_Exception (Program_Error'Identity, "some keys are identical"); end if; -- Insert selected position and sort Sel_Position table Last_Sel_Pos := Last_Sel_Pos + 1; Sel_Position (Last_Sel_Pos + 1 .. Min_Coll_Sel_Pos_Idx) := Sel_Position (Last_Sel_Pos .. Min_Coll_Sel_Pos_Idx - 1); Sel_Position (Last_Sel_Pos) := Min_Coll_Sel_Pos; for P in 1 .. Last_Sel_Pos - 1 loop if Min_Coll_Sel_Pos < Sel_Position (P) then Sel_Position (P + 1 .. Last_Sel_Pos) := Sel_Position (P .. Last_Sel_Pos - 1); Sel_Position (P) := Min_Coll_Sel_Pos; exit; end if; end loop; exit when Min_Collisions = 0; Build_Identical_Keys_Sets (Same_Keys_Sets_Table, Same_Keys_Sets_Last, Min_Coll_Sel_Pos); end loop; end; Char_Pos_Set_Len := Last_Sel_Pos; Char_Pos_Set := Allocate (Char_Pos_Set_Len, Char_Pos_Size); for C in 1 .. Last_Sel_Pos loop Set_Char_Pos (C - 1, Sel_Position (C)); end loop; end Select_Char_Position; ------------------ -- Set_Char_Pos -- ------------------ procedure Set_Char_Pos (P : Natural; Item : Natural) is N : constant Natural := Char_Pos_Set + P; begin IT.Table (N) := Item; end Set_Char_Pos; --------------- -- Set_Edges -- --------------- procedure Set_Edges (F : Natural; Item : Edge_Type) is N : constant Natural := Edges + (F * Edge_Size); begin IT.Table (N) := Item.X; IT.Table (N + 1) := Item.Y; IT.Table (N + 2) := Item.Key; end Set_Edges; --------------- -- Set_Graph -- --------------- procedure Set_Graph (F : Natural; Item : Integer) is N : constant Natural := G + (F * Graph_Item_Size); begin IT.Table (N) := Item; end Set_Graph; ------------- -- Set_Key -- ------------- procedure Set_Key (F : Key_Id; Item : Key_Type) is N : constant Natural := Keys + F * Key_Size; begin IT.Table (N) := Item.Edge; end Set_Key; ------------------ -- Set_Rand_Tab -- ------------------ procedure Set_Rand_Tab (T : Integer; X, Y : Natural; Item : Natural) is N : constant Natural := T + ((Y * Rand_Tab_Len_1) + X) * Rand_Tab_Item_Size; begin IT.Table (N) := Item; end Set_Rand_Tab; ------------------- -- Set_Used_Char -- ------------------- procedure Set_Used_Char (C : Character; Item : Natural) is N : constant Natural := Used_Char_Set + Character'Pos (C) * Used_Char_Size; begin IT.Table (N) := Item; end Set_Used_Char; ------------------ -- Set_Vertices -- ------------------ procedure Set_Vertices (F : Natural; Item : Vertex_Type) is N : constant Natural := Vertices + (F * Vertex_Size); begin IT.Table (N) := Item.First; IT.Table (N + 1) := Item.Last; end Set_Vertices; --------- -- Sum -- --------- function Sum (Word : Word_Type; Table : Table_Id; Opt : Optimization) return Natural is S : Natural := 0; R : Natural; begin if Opt = CPU_Time then for J in 0 .. Rand_Tab_Len_1 - 1 loop exit when Word (J + 1) = ASCII.NUL; R := Get_Rand_Tab (Table, J, Get_Used_Char (Word (J + 1))); S := (S + R) mod NV; end loop; else for J in 0 .. Rand_Tab_Len_1 - 1 loop exit when Word (J + 1) = ASCII.NUL; R := Get_Rand_Tab (Table, J, 0); S := (S + R * Character'Pos (Word (J + 1))) mod NV; end loop; end if; return S; end Sum; --------------- -- Type_Size -- --------------- function Type_Size (L : Natural) return Natural is begin if L <= 2 ** 8 then return 8; elsif L <= 2 ** 16 then return 16; else return 32; end if; end Type_Size; ----------- -- Value -- ----------- function Value (Name : Table_Name; J : Natural; K : Natural := 0) return Natural is begin case Name is when Character_Position => return Get_Char_Pos (J); when Used_Character_Set => return Get_Used_Char (Character'Val (J)); when Function_Table_1 => return Get_Rand_Tab (T1, J, K); when Function_Table_2 => return Get_Rand_Tab (T2, J, K); when Graph_Table => return Get_Graph (J); end case; end Value; end GNAT.Perfect_Hash_Generators;