stl_vector.h   [plain text]


// Vector implementation -*- C++ -*-

// Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this  software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_vector.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef _VECTOR_H
#define _VECTOR_H 1

#include <bits/stl_iterator_base_funcs.h>
#include <bits/functexcept.h>
#include <bits/concept_check.h>

namespace _GLIBCXX_STD
{
  /**
   *  @if maint
   *  See bits/stl_deque.h's _Deque_base for an explanation.
   *  @endif
  */
  template<typename _Tp, typename _Alloc>
    struct _Vector_base
    {
      struct _Vector_impl 
      : public _Alloc
      {
	_Tp*           _M_start;
	_Tp*           _M_finish;
	_Tp*           _M_end_of_storage;
	_Vector_impl(_Alloc const& __a)
	: _Alloc(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
	{ }
      };
      
    public:
      typedef _Alloc allocator_type;

      allocator_type
      get_allocator() const
      { return *static_cast<const _Alloc*>(&this->_M_impl); }

      _Vector_base(const allocator_type& __a)
      : _M_impl(__a)
      { }

      _Vector_base(size_t __n, const allocator_type& __a)
      : _M_impl(__a)
      {
	this->_M_impl._M_start = this->_M_allocate(__n);
	this->_M_impl._M_finish = this->_M_impl._M_start;
	this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
      }

      ~_Vector_base()
      { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
		      - this->_M_impl._M_start); }

    public:
      _Vector_impl _M_impl;

      _Tp*
      _M_allocate(size_t __n)
      { return _M_impl.allocate(__n); }

      void
      _M_deallocate(_Tp* __p, size_t __n)
      {
	if (__p)
	  _M_impl.deallocate(__p, __n);
      }
    };


  /**
   *  @brief A standard container which offers fixed time access to
   *  individual elements in any order.
   *
   *  @ingroup Containers
   *  @ingroup Sequences
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and a
   *  <a href="tables.html#67">sequence</a>, including the
   *  <a href="tables.html#68">optional sequence requirements</a> with the
   *  %exception of @c push_front and @c pop_front.
   *
   *  In some terminology a %vector can be described as a dynamic
   *  C-style array, it offers fast and efficient access to individual
   *  elements in any order and saves the user from worrying about
   *  memory and size allocation.  Subscripting ( @c [] ) access is
   *  also provided as with C-style arrays.
  */
  template<typename _Tp, typename _Alloc = allocator<_Tp> >
    class vector : protected _Vector_base<_Tp, _Alloc>
    {
      // Concept requirements.
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)

      typedef _Vector_base<_Tp, _Alloc>			_Base;
      typedef vector<_Tp, _Alloc>			vector_type;

    public:
      typedef _Tp					 value_type;
      typedef typename _Alloc::pointer                   pointer;
      typedef typename _Alloc::const_pointer             const_pointer;
      typedef typename _Alloc::reference                 reference;
      typedef typename _Alloc::const_reference           const_reference;
      typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
      typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
      const_iterator;
      typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
      typedef std::reverse_iterator<iterator>		 reverse_iterator;
      typedef size_t					 size_type;
      typedef ptrdiff_t					 difference_type;
      typedef typename _Base::allocator_type		 allocator_type;

    protected:
      /** @if maint
       *  These two functions and three data members are all from the
       *  base class.  They should be pretty self-explanatory, as
       *  %vector uses a simple contiguous allocation scheme.  @endif
       */
      using _Base::_M_allocate;
      using _Base::_M_deallocate;
      using _Base::_M_impl;

    public:
      // [23.2.4.1] construct/copy/destroy
      // (assign() and get_allocator() are also listed in this section)
      /**
       *  @brief  Default constructor creates no elements.
       */
      explicit
      vector(const allocator_type& __a = allocator_type())
      : _Base(__a)
      { }

      /**
       *  @brief  Create a %vector with copies of an exemplar element.
       *  @param  n  The number of elements to initially create.
       *  @param  value  An element to copy.
       *
       *  This constructor fills the %vector with @a n copies of @a value.
       */
      vector(size_type __n, const value_type& __value,
	     const allocator_type& __a = allocator_type())
      : _Base(__n, __a)
      {
	std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
				      this->get_allocator());
	this->_M_impl._M_finish = this->_M_impl._M_start + __n;
      }

      /**
       *  @brief  Create a %vector with default elements.
       *  @param  n  The number of elements to initially create.
       *
       *  This constructor fills the %vector with @a n copies of a
       *  default-constructed element.
       */
      explicit
      vector(size_type __n)
      : _Base(__n, allocator_type())
      {
	std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, value_type(),
				      this->get_allocator());
	this->_M_impl._M_finish = this->_M_impl._M_start + __n;	
      }

      /**
       *  @brief  %Vector copy constructor.
       *  @param  x  A %vector of identical element and allocator types.
       *
       *  The newly-created %vector uses a copy of the allocation
       *  object used by @a x.  All the elements of @a x are copied,
       *  but any extra memory in
       *  @a x (for fast expansion) will not be copied.
       */
      vector(const vector& __x)
      : _Base(__x.size(), __x.get_allocator())
      { this->_M_impl._M_finish =
	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
				      this->_M_impl._M_start,
				      this->get_allocator());
      }

      /**
       *  @brief  Builds a %vector from a range.
       *  @param  first  An input iterator.
       *  @param  last  An input iterator.
       *
       *  Create a %vector consisting of copies of the elements from
       *  [first,last).
       *
       *  If the iterators are forward, bidirectional, or
       *  random-access, then this will call the elements' copy
       *  constructor N times (where N is distance(first,last)) and do
       *  no memory reallocation.  But if only input iterators are
       *  used, then this will do at most 2N calls to the copy
       *  constructor, and logN memory reallocations.
       */
      template<typename _InputIterator>
        vector(_InputIterator __first, _InputIterator __last,
	       const allocator_type& __a = allocator_type())
	: _Base(__a)
        {
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_initialize_dispatch(__first, __last, _Integral());
	}

      /**
       *  The dtor only erases the elements, and note that if the
       *  elements themselves are pointers, the pointed-to memory is
       *  not touched in any way.  Managing the pointer is the user's
       *  responsibilty.
       */
      ~vector()
      { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
		      this->get_allocator());
      }

      /**
       *  @brief  %Vector assignment operator.
       *  @param  x  A %vector of identical element and allocator types.
       *
       *  All the elements of @a x are copied, but any extra memory in
       *  @a x (for fast expansion) will not be copied.  Unlike the
       *  copy constructor, the allocator object is not copied.
       */
      vector&
      operator=(const vector& __x);

      /**
       *  @brief  Assigns a given value to a %vector.
       *  @param  n  Number of elements to be assigned.
       *  @param  val  Value to be assigned.
       *
       *  This function fills a %vector with @a n copies of the given
       *  value.  Note that the assignment completely changes the
       *  %vector and that the resulting %vector's size is the same as
       *  the number of elements assigned.  Old data may be lost.
       */
      void
      assign(size_type __n, const value_type& __val)
      { _M_fill_assign(__n, __val); }

      /**
       *  @brief  Assigns a range to a %vector.
       *  @param  first  An input iterator.
       *  @param  last   An input iterator.
       *
       *  This function fills a %vector with copies of the elements in the
       *  range [first,last).
       *
       *  Note that the assignment completely changes the %vector and
       *  that the resulting %vector's size is the same as the number
       *  of elements assigned.  Old data may be lost.
       */
      template<typename _InputIterator>
        void
        assign(_InputIterator __first, _InputIterator __last)
        {
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_assign_dispatch(__first, __last, _Integral());
	}

      /// Get a copy of the memory allocation object.
      using _Base::get_allocator;

      // iterators
      /**
       *  Returns a read/write iterator that points to the first
       *  element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      iterator
      begin()
      { return iterator (this->_M_impl._M_start); }

      /**
       *  Returns a read-only (constant) iterator that points to the
       *  first element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      const_iterator
      begin() const
      { return const_iterator (this->_M_impl._M_start); }

      /**
       *  Returns a read/write iterator that points one past the last
       *  element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      iterator
      end()
      { return iterator (this->_M_impl._M_finish); }

      /**
       *  Returns a read-only (constant) iterator that points one past
       *  the last element in the %vector.  Iteration is done in
       *  ordinary element order.
       */
      const_iterator
      end() const
      { return const_iterator (this->_M_impl._M_finish); }

      /**
       *  Returns a read/write reverse iterator that points to the
       *  last element in the %vector.  Iteration is done in reverse
       *  element order.
       */
      reverse_iterator
      rbegin()
      { return reverse_iterator(end()); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to the last element in the %vector.  Iteration is done in
       *  reverse element order.
       */
      const_reverse_iterator
      rbegin() const
      { return const_reverse_iterator(end()); }

      /**
       *  Returns a read/write reverse iterator that points to one
       *  before the first element in the %vector.  Iteration is done
       *  in reverse element order.
       */
      reverse_iterator
      rend()
      { return reverse_iterator(begin()); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to one before the first element in the %vector.  Iteration
       *  is done in reverse element order.
       */
      const_reverse_iterator
      rend() const
      { return const_reverse_iterator(begin()); }

      // [23.2.4.2] capacity
      /**  Returns the number of elements in the %vector.  */
      size_type
      size() const
      { return size_type(end() - begin()); }

      /**  Returns the size() of the largest possible %vector.  */
      size_type
      max_size() const
      { return size_type(-1) / sizeof(value_type); }

      /**
       *  @brief  Resizes the %vector to the specified number of elements.
       *  @param  new_size  Number of elements the %vector should contain.
       *  @param  x  Data with which new elements should be populated.
       *
       *  This function will %resize the %vector to the specified
       *  number of elements.  If the number is smaller than the
       *  %vector's current size the %vector is truncated, otherwise
       *  the %vector is extended and new elements are populated with
       *  given data.
       */
      void
      resize(size_type __new_size, const value_type& __x)
      {
	if (__new_size < size())
	  erase(begin() + __new_size, end());
	else
	  insert(end(), __new_size - size(), __x);
      }

      /**
       *  @brief  Resizes the %vector to the specified number of elements.
       *  @param  new_size  Number of elements the %vector should contain.
       *
       *  This function will resize the %vector to the specified
       *  number of elements.  If the number is smaller than the
       *  %vector's current size the %vector is truncated, otherwise
       *  the %vector is extended and new elements are
       *  default-constructed.
       */
      void
      resize(size_type __new_size)
      { resize(__new_size, value_type()); }

      /**
       *  Returns the total number of elements that the %vector can
       *  hold before needing to allocate more memory.
       */
      size_type
      capacity() const
      { return size_type(const_iterator(this->_M_impl._M_end_of_storage)
			 - begin()); }

      /**
       *  Returns true if the %vector is empty.  (Thus begin() would
       *  equal end().)
       */
      bool
      empty() const
      { return begin() == end(); }

      /**
       *  @brief  Attempt to preallocate enough memory for specified number of
       *          elements.
       *  @param  n  Number of elements required.
       *  @throw  std::length_error  If @a n exceeds @c max_size().
       *
       *  This function attempts to reserve enough memory for the
       *  %vector to hold the specified number of elements.  If the
       *  number requested is more than max_size(), length_error is
       *  thrown.
       *
       *  The advantage of this function is that if optimal code is a
       *  necessity and the user can determine the number of elements
       *  that will be required, the user can reserve the memory in
       *  %advance, and thus prevent a possible reallocation of memory
       *  and copying of %vector data.
       */
      void
      reserve(size_type __n);

      // element access
      /**
       *  @brief  Subscript access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       */
      reference
      operator[](size_type __n)
      { return *(begin() + __n); }

      /**
       *  @brief  Subscript access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       */
      const_reference
      operator[](size_type __n) const
      { return *(begin() + __n); }

    protected:
      /// @if maint Safety check used only from at().  @endif
      void
      _M_range_check(size_type __n) const
      {
	if (__n >= this->size())
	  __throw_out_of_range(__N("vector::_M_range_check"));
      }

    public:
      /**
       *  @brief  Provides access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *  @throw  std::out_of_range  If @a n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter
       *  is first checked that it is in the range of the vector.  The
       *  function throws out_of_range if the check fails.
       */
      reference
      at(size_type __n)
      {
	_M_range_check(__n);
	return (*this)[__n]; 
      }

      /**
       *  @brief  Provides access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *  @throw  std::out_of_range  If @a n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter
       *  is first checked that it is in the range of the vector.  The
       *  function throws out_of_range if the check fails.
       */
      const_reference
      at(size_type __n) const
      {
	_M_range_check(__n);
	return (*this)[__n];
      }

      /**
       *  Returns a read/write reference to the data at the first
       *  element of the %vector.
       */
      reference
      front()
      { return *begin(); }

      /**
       *  Returns a read-only (constant) reference to the data at the first
       *  element of the %vector.
       */
      const_reference
      front() const
      { return *begin(); }

      /**
       *  Returns a read/write reference to the data at the last
       *  element of the %vector.
       */
      reference
      back()
      { return *(end() - 1); }
      
      /**
       *  Returns a read-only (constant) reference to the data at the
       *  last element of the %vector.
       */
      const_reference
      back() const
      { return *(end() - 1); }

      // [23.2.4.3] modifiers
      /**
       *  @brief  Add data to the end of the %vector.
       *  @param  x  Data to be added.
       *
       *  This is a typical stack operation.  The function creates an
       *  element at the end of the %vector and assigns the given data
       *  to it.  Due to the nature of a %vector this operation can be
       *  done in constant time if the %vector has preallocated space
       *  available.
       */
      void
      push_back(const value_type& __x)
      {
	if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
	  {
	    this->_M_impl.construct(this->_M_impl._M_finish, __x);
	    ++this->_M_impl._M_finish;
	  }
	else
	  _M_insert_aux(end(), __x);
      }

      /**
       *  @brief  Removes last element.
       *
       *  This is a typical stack operation. It shrinks the %vector by one.
       *
       *  Note that no data is returned, and if the last element's
       *  data is needed, it should be retrieved before pop_back() is
       *  called.
       */
      void
      pop_back()
      {
	--this->_M_impl._M_finish;
	this->_M_impl.destroy(this->_M_impl._M_finish);
      }

      /**
       *  @brief  Inserts given value into %vector before specified iterator.
       *  @param  position  An iterator into the %vector.
       *  @param  x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given value before
       *  the specified location.  Note that this kind of operation
       *  could be expensive for a %vector and if it is frequently
       *  used the user should consider using std::list.
       */
      iterator
      insert(iterator __position, const value_type& __x);

      /**
       *  @brief  Inserts a number of copies of given data into the %vector.
       *  @param  position  An iterator into the %vector.
       *  @param  n  Number of elements to be inserted.
       *  @param  x  Data to be inserted.
       *
       *  This function will insert a specified number of copies of
       *  the given data before the location specified by @a position.
       *
       *  Note that this kind of operation could be expensive for a
       *  %vector and if it is frequently used the user should
       *  consider using std::list.
       */
      void
      insert(iterator __position, size_type __n, const value_type& __x)
      { _M_fill_insert(__position, __n, __x); }

      /**
       *  @brief  Inserts a range into the %vector.
       *  @param  position  An iterator into the %vector.
       *  @param  first  An input iterator.
       *  @param  last   An input iterator.
       *
       *  This function will insert copies of the data in the range
       *  [first,last) into the %vector before the location specified
       *  by @a pos.
       *
       *  Note that this kind of operation could be expensive for a
       *  %vector and if it is frequently used the user should
       *  consider using std::list.
       */
      template<typename _InputIterator>
        void
        insert(iterator __position, _InputIterator __first,
	       _InputIterator __last)
        {
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_insert_dispatch(__position, __first, __last, _Integral());
	}

      /**
       *  @brief  Remove element at given position.
       *  @param  position  Iterator pointing to element to be erased.
       *  @return  An iterator pointing to the next element (or end()).
       *
       *  This function will erase the element at the given position and thus
       *  shorten the %vector by one.
       *
       *  Note This operation could be expensive and if it is
       *  frequently used the user should consider using std::list.
       *  The user is also cautioned that this function only erases
       *  the element, and that if the element is itself a pointer,
       *  the pointed-to memory is not touched in any way.  Managing
       *  the pointer is the user's responsibilty.
       */
      iterator
      erase(iterator __position);

      /**
       *  @brief  Remove a range of elements.
       *  @param  first  Iterator pointing to the first element to be erased.
       *  @param  last  Iterator pointing to one past the last element to be
       *                erased.
       *  @return  An iterator pointing to the element pointed to by @a last
       *           prior to erasing (or end()).
       *
       *  This function will erase the elements in the range [first,last) and
       *  shorten the %vector accordingly.
       *
       *  Note This operation could be expensive and if it is
       *  frequently used the user should consider using std::list.
       *  The user is also cautioned that this function only erases
       *  the elements, and that if the elements themselves are
       *  pointers, the pointed-to memory is not touched in any way.
       *  Managing the pointer is the user's responsibilty.
       */
      iterator
      erase(iterator __first, iterator __last);

      /**
       *  @brief  Swaps data with another %vector.
       *  @param  x  A %vector of the same element and allocator types.
       *
       *  This exchanges the elements between two vectors in constant time.
       *  (Three pointers, so it should be quite fast.)
       *  Note that the global std::swap() function is specialized such that
       *  std::swap(v1,v2) will feed to this function.
       */
      void
      swap(vector& __x)
      {
	std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
	std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
	std::swap(this->_M_impl._M_end_of_storage,
		  __x._M_impl._M_end_of_storage);
      }

      /**
       *  Erases all the elements.  Note that this function only erases the
       *  elements, and that if the elements themselves are pointers, the
       *  pointed-to memory is not touched in any way.  Managing the pointer is
       *  the user's responsibilty.
       */
      void
      clear()
      { erase(begin(), end()); }

    protected:
      /**
       *  @if maint
       *  Memory expansion handler.  Uses the member allocation function to
       *  obtain @a n bytes of memory, and then copies [first,last) into it.
       *  @endif
       */
      template<typename _ForwardIterator>
        pointer
        _M_allocate_and_copy(size_type __n,
			     _ForwardIterator __first, _ForwardIterator __last)
        {
	  pointer __result = this->_M_allocate(__n);
	  try
	    {
	      std::__uninitialized_copy_a(__first, __last, __result,
					  this->get_allocator());
	      return __result;
	    }
	  catch(...)
	    {
	      _M_deallocate(__result, __n);
	      __throw_exception_again;
	    }
	}


      // Internal constructor functions follow.

      // Called by the range constructor to implement [23.1.1]/9
      template<typename _Integer>
        void
        _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
        {
	  this->_M_impl._M_start = _M_allocate(__n);
	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
	  std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
					this->get_allocator());
	  this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
	}

      // Called by the range constructor to implement [23.1.1]/9
      template<typename _InputIterator>
        void
        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
			       __false_type)
        {
	  typedef typename iterator_traits<_InputIterator>::iterator_category
	    _IterCategory;
	  _M_range_initialize(__first, __last, _IterCategory());
	}

      // Called by the second initialize_dispatch above
      template<typename _InputIterator>
        void
        _M_range_initialize(_InputIterator __first,
			    _InputIterator __last, input_iterator_tag)
        {
	  for (; __first != __last; ++__first)
	    push_back(*__first);
	}

      // Called by the second initialize_dispatch above
      template<typename _ForwardIterator>
        void
        _M_range_initialize(_ForwardIterator __first,
			    _ForwardIterator __last, forward_iterator_tag)
        {
	  const size_type __n = std::distance(__first, __last);
	  this->_M_impl._M_start = this->_M_allocate(__n);
	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
	  this->_M_impl._M_finish =
	    std::__uninitialized_copy_a(__first, __last,
					this->_M_impl._M_start,
					this->get_allocator());
	}


      // Internal assign functions follow.  The *_aux functions do the actual
      // assignment work for the range versions.

      // Called by the range assign to implement [23.1.1]/9
      template<typename _Integer>
        void
        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
        {
	  _M_fill_assign(static_cast<size_type>(__n),
			 static_cast<value_type>(__val));
	}

      // Called by the range assign to implement [23.1.1]/9
      template<typename _InputIterator>
        void
        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
			   __false_type)
        {
	  typedef typename iterator_traits<_InputIterator>::iterator_category
	    _IterCategory;
	  _M_assign_aux(__first, __last, _IterCategory());
	}

      // Called by the second assign_dispatch above
      template<typename _InputIterator>
        void
        _M_assign_aux(_InputIterator __first, _InputIterator __last,
		      input_iterator_tag);

      // Called by the second assign_dispatch above
      template<typename _ForwardIterator>
        void
        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
		      forward_iterator_tag);

      // Called by assign(n,t), and the range assign when it turns out
      // to be the same thing.
      void
      _M_fill_assign(size_type __n, const value_type& __val);


      // Internal insert functions follow.

      // Called by the range insert to implement [23.1.1]/9
      template<typename _Integer>
        void
        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
			   __true_type)
        {
	  _M_fill_insert(__pos, static_cast<size_type>(__n),
			 static_cast<value_type>(__val));
	}

      // Called by the range insert to implement [23.1.1]/9
      template<typename _InputIterator>
        void
        _M_insert_dispatch(iterator __pos, _InputIterator __first,
			   _InputIterator __last, __false_type)
        {
	  typedef typename iterator_traits<_InputIterator>::iterator_category
	    _IterCategory;
	  _M_range_insert(__pos, __first, __last, _IterCategory());
	}

      // Called by the second insert_dispatch above
      template<typename _InputIterator>
        void
        _M_range_insert(iterator __pos, _InputIterator __first,
			_InputIterator __last, input_iterator_tag);

      // Called by the second insert_dispatch above
      template<typename _ForwardIterator>
        void
        _M_range_insert(iterator __pos, _ForwardIterator __first,
			_ForwardIterator __last, forward_iterator_tag);

      // Called by insert(p,n,x), and the range insert when it turns out to be
      // the same thing.
      void
      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);

      // Called by insert(p,x)
      void
      _M_insert_aux(iterator __position, const value_type& __x);
    };


  /**
   *  @brief  Vector equality comparison.
   *  @param  x  A %vector.
   *  @param  y  A %vector of the same type as @a x.
   *  @return  True iff the size and elements of the vectors are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  vectors.  Vectors are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return (__x.size() == __y.size()
	      && std::equal(__x.begin(), __x.end(), __y.begin())); }

  /**
   *  @brief  Vector ordering relation.
   *  @param  x  A %vector.
   *  @param  y  A %vector of the same type as @a x.
   *  @return  True iff @a x is lexicographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  vectors.  The elements must be comparable with @c <.
   *
   *  See std::lexicographical_compare() for how the determination is made.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return std::lexicographical_compare(__x.begin(), __x.end(),
					  __y.begin(), __y.end()); }

  /// Based on operator==
  template<typename _Tp, typename _Alloc>
    inline bool
    operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return !(__x == __y); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return __y < __x; }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return !(__y < __x); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return !(__x < __y); }

  /// See std::vector::swap().
  template<typename _Tp, typename _Alloc>
    inline void
    swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
    { __x.swap(__y); }
} // namespace std

#endif /* _VECTOR_H */