tree-vectorizer.h   [plain text]

/* Loop Vectorization
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
   Contributed by Dorit Naishlos <>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */


  typedef source_location LOC;
  #define EXPR_LOC(e) EXPR_LOCATION(e)
  #define LOC_FILE(l) LOCATION_FILE (l)
  #define LOC_LINE(l) LOCATION_LINE (l)
  typedef source_locus LOC;
  #define EXPR_LOC(e) EXPR_LOCUS(e)
  #define LOC_FILE(l) (l)->file
  #define LOC_LINE(l) (l)->line

/* Used for naming of new temporaries.  */
enum vect_var_kind {

/* Defines type of operation: unary or binary.  */
enum operation_type {
  unary_op = 1,

/* Define type of available alignment support.  */
enum dr_alignment_support {

/* Define verbosity levels.  */
enum verbosity_levels {
  /* New verbosity levels should be added before this one.  */

/* Info on vectorized loops.                                       */
typedef struct _loop_vec_info {

  /* The loop to which this info struct refers to.  */
  struct loop *loop;

  /* The loop basic blocks.  */
  basic_block *bbs;

  /* The loop exit_condition.  */
  tree exit_cond;

  /* Number of iterations.  */
  tree num_iters;

  /* Is the loop vectorizable? */
  bool vectorizable;

  /* Unrolling factor  */
  int vectorization_factor;

  /* Unknown DRs according to which loop was peeled.  */
  struct data_reference *unaligned_dr;

  /* If true, loop is peeled.
   unaligned_drs show in this case DRs used for peeling.  */
  bool do_peeling_for_alignment;

  /* All data references in the loop that are being written to.  */
  varray_type data_ref_writes;

  /* All data references in the loop that are being read from.  */
  varray_type data_ref_reads;

  /* The loop location in the source.  */
  LOC loop_line_number;
} *loop_vec_info;

/* Access Functions.  */
#define LOOP_VINFO_LOOP(L)           (L)->loop
#define LOOP_VINFO_BBS(L)            (L)->bbs
#define LOOP_VINFO_EXIT_COND(L)      (L)->exit_cond
#define LOOP_VINFO_NITERS(L)         (L)->num_iters
#define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
#define LOOP_VINFO_VECT_FACTOR(L)    (L)->vectorization_factor
#define LOOP_VINFO_DATAREF_WRITES(L) (L)->data_ref_writes
#define LOOP_VINFO_DATAREF_READS(L)  (L)->data_ref_reads
#define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
#define LOOP_DO_PEELING_FOR_ALIGNMENT(L) (L)->do_peeling_for_alignment
#define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
#define LOOP_VINFO_LOC(L)          (L)->loop_line_number


#define LOOP_VINFO_NITERS_KNOWN_P(L)                     \
(host_integerp ((L)->num_iters,0)                        \
&& TREE_INT_CST_LOW ((L)->num_iters) > 0)

/* Info on vectorized defs.                                        */
enum stmt_vec_info_type {
  undef_vec_info_type = 0,
  /* APPLE LOCAL AV cond expr. -dpatel */

typedef struct _stmt_vec_info {

  enum stmt_vec_info_type type;

  /* The stmt to which this info struct refers to.  */
  tree stmt;

  /* The loop_vec_info with respect to which STMT is vectorized.  */
  loop_vec_info loop_vinfo;

  /* Not all stmts in the loop need to be vectorized. e.g, the incrementation
     of the loop induction variable and computation of array indexes. relevant
     indicates whether the stmt needs to be vectorized.  */
  bool relevant;

  /* The vector type to be used.  */
  tree vectype;

  /* The vectorized version of the stmt.  */
  tree vectorized_stmt;

  /** The following is relevant only for stmts that contain a non-scalar
     data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have 
     at most one such data-ref.  **/

  /* Information about the data-ref (access function, etc).  */
  struct data_reference *data_ref_info;

  /* Aliasing information.  */
  tree memtag;

  /** The following fields are used to store the information about 
      data-reference. {base_address + initial_offset} is the first location 
      accessed by data-ref in the loop, and step is the stride of data-ref in 
      the loop in bytes;
                       Example 1                      Example 2
      data-ref         a[j].b[i][j]                   a + 4B (a is int*)
      base_address     &a                             a
      initial_offset   j_0*D_j + i_0*D_i + C          4
      step             D_j                            4

      data-reference structure info:
      base_name        a                              NULL
      access_fn        <access_fns of indexes of b>   (0, +, 1)

  /* The above base_address, offset and step.  */
  tree base_address;
  tree initial_offset;
  tree step;

  /* Alignment information. Whether the base of the data-reference is aligned 
     to vectype.  */
  bool base_aligned_p;
  /* Alignment information. The offset of the data-reference from its base 
     in bytes.  */
  tree misalignment;
} *stmt_vec_info;

/* Access Functions.  */
#define STMT_VINFO_TYPE(S)                (S)->type
#define STMT_VINFO_STMT(S)                (S)->stmt
#define STMT_VINFO_LOOP_VINFO(S)          (S)->loop_vinfo
#define STMT_VINFO_RELEVANT_P(S)          (S)->relevant
#define STMT_VINFO_VECTYPE(S)             (S)->vectype
#define STMT_VINFO_VEC_STMT(S)            (S)->vectorized_stmt
#define STMT_VINFO_DATA_REF(S)            (S)->data_ref_info
#define STMT_VINFO_MEMTAG(S)              (S)->memtag
#define STMT_VINFO_VECT_DR_BASE_ADDRESS(S)(S)->base_address
#define STMT_VINFO_VECT_INIT_OFFSET(S)    (S)->initial_offset
#define STMT_VINFO_VECT_STEP(S)           (S)->step
#define STMT_VINFO_VECT_BASE_ALIGNED_P(S) (S)->base_aligned_p
#define STMT_VINFO_VECT_MISALIGNMENT(S)   (S)->misalignment

static inline void set_stmt_info (stmt_ann_t ann, stmt_vec_info stmt_info);
static inline stmt_vec_info vinfo_for_stmt (tree stmt);

static inline void
set_stmt_info (stmt_ann_t ann, stmt_vec_info stmt_info)
  if (ann)
    ann->common.aux = (char *) stmt_info;

static inline stmt_vec_info
vinfo_for_stmt (tree stmt)
  stmt_ann_t ann = stmt_ann (stmt);
  return ann ? (stmt_vec_info) ann->common.aux : NULL;

/* Info on data references alignment.                              */

/* The misalignment of the memory access in bytes.  */
#define DR_MISALIGNMENT(DR)   (DR)->aux

static inline bool
aligned_access_p (struct data_reference *data_ref_info)
  return (DR_MISALIGNMENT (data_ref_info) == 0);

static inline bool
unknown_alignment_for_access_p (struct data_reference *data_ref_info)
  return (DR_MISALIGNMENT (data_ref_info) == -1);

/* Perform signed modulo, always returning a non-negative value.  */
#define VECT_SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))

/* vect_dump will be set to stderr or dump_file if exist.  */
extern FILE *vect_dump;
extern enum verbosity_levels vect_verbosity_level;

/* Function prototypes.                                            */

  Simple Loop Peeling Utilities - in tree-vectorizer.c
/* Entry point for peeling of simple loops.
   Peel the first/last iterations of a loop.
   It can be used outside of the vectorizer for loops that are simple enough
   (see function documentation).  In the vectorizer it is used to peel the
   last few iterations when the loop bound is unknown or does not evenly
   divide by the vectorization factor, and to peel the first few iterations
   to force the alignment of data references in the loop.  */
extern struct loop *slpeel_tree_peel_loop_to_edge 
  (struct loop *, struct loops *, edge, tree, tree, bool);
extern void slpeel_make_loop_iterate_ntimes (struct loop *, tree);
extern bool slpeel_can_duplicate_loop_p (struct loop *, edge);
extern void slpeel_verify_cfg_after_peeling (struct loop *, struct loop *);

  General Vectorization Utilities
/** In tree-vectorizer.c **/
extern tree vect_strip_conversion (tree);
extern tree get_vectype_for_scalar_type (tree);
extern bool vect_is_simple_use (tree , loop_vec_info, tree *);
extern bool vect_is_simple_iv_evolution (unsigned, tree, tree *, tree *);
extern bool vect_can_force_dr_alignment_p (tree, unsigned int);
extern enum dr_alignment_support vect_supportable_dr_alignment
  (struct data_reference *);
/* Creation and deletion of loop and stmt info structs.  */
extern loop_vec_info new_loop_vec_info (struct loop *loop);
extern void destroy_loop_vec_info (loop_vec_info);
extern stmt_vec_info new_stmt_vec_info (tree stmt, loop_vec_info);
/* Main driver.  */
extern void vectorize_loops (struct loops *);

/* APPLE LOCAL begin loops-to-memset  */
extern struct data_reference * vect_analyze_pointer_ref_access (tree, tree, bool, tree, tree *, tree *);
extern tree vect_get_loop_niters (struct loop *, tree *);
/* APPLE LOCAL end loops-to-memset  */

/* APPLE LOCAL begin AV data dependence. -dpatel */
/* Patch is waiting FSF review since mid Sep,  2004.
   New variable, loops_num.  */
extern unsigned int loops_num;

extern bool vectorizable_select (tree, block_stmt_iterator *, tree *);
/* APPLE LOCAL end AV data dependence. -dpatel */

/** In tree-vect-analyze.c  **/
/* Driver for analysis stage.  */
extern loop_vec_info vect_analyze_loop (struct loop *);

/** In tree-vect-transform.c  **/
extern bool vectorizable_load (tree, block_stmt_iterator *, tree *);
extern bool vectorizable_store (tree, block_stmt_iterator *, tree *);
extern bool vectorizable_operation (tree, block_stmt_iterator *, tree *);
extern bool vectorizable_assignment (tree, block_stmt_iterator *, tree *);
/* Driver for transformation stage.  */
extern void vect_transform_loop (loop_vec_info, struct loops *);

  Vectorization Debug Information - in tree-vectorizer.c
extern bool vect_print_dump_info (enum verbosity_levels, LOC);
extern void vect_set_verbosity_level (const char *);
extern LOC find_loop_location (struct loop *);

#endif  /* GCC_TREE_VECTORIZER_H  */