------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- F R E E Z E -- -- -- -- B o d y -- -- -- -- -- -- Copyright (C) 1992-2002, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING. If not, write -- -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- -- MA 02111-1307, USA. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Debug; use Debug; with Einfo; use Einfo; with Elists; use Elists; with Errout; use Errout; with Exp_Ch7; use Exp_Ch7; with Exp_Ch11; use Exp_Ch11; with Exp_Pakd; use Exp_Pakd; with Exp_Util; use Exp_Util; with Layout; use Layout; with Lib.Xref; use Lib.Xref; with Nlists; use Nlists; with Nmake; use Nmake; with Opt; use Opt; with Restrict; use Restrict; with Sem; use Sem; with Sem_Cat; use Sem_Cat; with Sem_Ch6; use Sem_Ch6; with Sem_Ch7; use Sem_Ch7; with Sem_Ch8; use Sem_Ch8; with Sem_Ch13; use Sem_Ch13; with Sem_Eval; use Sem_Eval; with Sem_Mech; use Sem_Mech; with Sem_Prag; use Sem_Prag; with Sem_Res; use Sem_Res; with Sem_Util; use Sem_Util; with Sinfo; use Sinfo; with Snames; use Snames; with Stand; use Stand; with Targparm; use Targparm; with Tbuild; use Tbuild; with Ttypes; use Ttypes; with Uintp; use Uintp; with Urealp; use Urealp; package body Freeze is ----------------------- -- Local Subprograms -- ----------------------- procedure Adjust_Esize_For_Alignment (Typ : Entity_Id); -- Typ is a type that is being frozen. If no size clause is given, -- but a default Esize has been computed, then this default Esize is -- adjusted up if necessary to be consistent with a given alignment, -- but never to a value greater than Long_Long_Integer'Size. This -- is used for all discrete types and for fixed-point types. procedure Build_And_Analyze_Renamed_Body (Decl : Node_Id; New_S : Entity_Id; After : in out Node_Id); -- Build body for a renaming declaration, insert in tree and analyze. procedure Check_Strict_Alignment (E : Entity_Id); -- E is a base type. If E is tagged or has a component that is aliased -- or tagged or contains something this is aliased or tagged, set -- Strict_Alignment. procedure Check_Unsigned_Type (E : Entity_Id); pragma Inline (Check_Unsigned_Type); -- If E is a fixed-point or discrete type, then all the necessary work -- to freeze it is completed except for possible setting of the flag -- Is_Unsigned_Type, which is done by this procedure. The call has no -- effect if the entity E is not a discrete or fixed-point type. procedure Freeze_And_Append (Ent : Entity_Id; Loc : Source_Ptr; Result : in out List_Id); -- Freezes Ent using Freeze_Entity, and appends the resulting list of -- nodes to Result, modifying Result from No_List if necessary. procedure Freeze_Enumeration_Type (Typ : Entity_Id); -- Freeze enumeration type. The Esize field is set as processing -- proceeds (i.e. set by default when the type is declared and then -- adjusted by rep clauses. What this procedure does is to make sure -- that if a foreign convention is specified, and no specific size -- is given, then the size must be at least Integer'Size. procedure Freeze_Static_Object (E : Entity_Id); -- If an object is frozen which has Is_Statically_Allocated set, then -- all referenced types must also be marked with this flag. This routine -- is in charge of meeting this requirement for the object entity E. procedure Freeze_Subprogram (E : Entity_Id); -- Perform freezing actions for a subprogram (create extra formals, -- and set proper default mechanism values). Note that this routine -- is not called for internal subprograms, for which neither of these -- actions is needed (or desirable, we do not want for example to have -- these extra formals present in initialization procedures, where they -- would serve no purpose). In this call E is either a subprogram or -- a subprogram type (i.e. an access to a subprogram). function Is_Fully_Defined (T : Entity_Id) return Boolean; -- true if T is not private, or has a full view. procedure Process_Default_Expressions (E : Entity_Id; After : in out Node_Id); -- This procedure is called for each subprogram to complete processing -- of default expressions at the point where all types are known to be -- frozen. The expressions must be analyzed in full, to make sure that -- all error processing is done (they have only been pre-analyzed). If -- the expression is not an entity or literal, its analysis may generate -- code which must not be executed. In that case we build a function -- body to hold that code. This wrapper function serves no other purpose -- (it used to be called to evaluate the default, but now the default is -- inlined at each point of call). procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id); -- Typ is a record or array type that is being frozen. This routine -- sets the default component alignment from the scope stack values -- if the alignment is otherwise not specified. procedure Check_Debug_Info_Needed (T : Entity_Id); -- As each entity is frozen, this routine is called to deal with the -- setting of Debug_Info_Needed for the entity. This flag is set if -- the entity comes from source, or if we are in Debug_Generated_Code -- mode or if the -gnatdV debug flag is set. However, it never sets -- the flag if Debug_Info_Off is set. procedure Set_Debug_Info_Needed (T : Entity_Id); -- Sets the Debug_Info_Needed flag on entity T if not already set, and -- also on any entities that are needed by T (for an object, the type -- of the object is needed, and for a type, the subsidiary types are -- needed -- see body for details). Never has any effect on T if the -- Debug_Info_Off flag is set. ------------------------------- -- Adjust_Esize_For_Alignment -- ------------------------------- procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is Align : Uint; begin if Known_Esize (Typ) and then Known_Alignment (Typ) then Align := Alignment_In_Bits (Typ); if Align > Esize (Typ) and then Align <= Standard_Long_Long_Integer_Size then Set_Esize (Typ, Align); end if; end if; end Adjust_Esize_For_Alignment; ------------------------------------ -- Build_And_Analyze_Renamed_Body -- ------------------------------------ procedure Build_And_Analyze_Renamed_Body (Decl : Node_Id; New_S : Entity_Id; After : in out Node_Id) is Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S); begin Insert_After (After, Body_Node); Mark_Rewrite_Insertion (Body_Node); Analyze (Body_Node); After := Body_Node; end Build_And_Analyze_Renamed_Body; ------------------------ -- Build_Renamed_Body -- ------------------------ function Build_Renamed_Body (Decl : Node_Id; New_S : Entity_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (New_S); -- We use for the source location of the renamed body, the location -- of the spec entity. It might seem more natural to use the location -- of the renaming declaration itself, but that would be wrong, since -- then the body we create would look as though it was created far -- too late, and this could cause problems with elaboration order -- analysis, particularly in connection with instantiations. N : constant Node_Id := Unit_Declaration_Node (New_S); Nam : constant Node_Id := Name (N); Old_S : Entity_Id; Spec : constant Node_Id := New_Copy_Tree (Specification (Decl)); Actuals : List_Id := No_List; Call_Node : Node_Id; Call_Name : Node_Id; Body_Node : Node_Id; Formal : Entity_Id; O_Formal : Entity_Id; Param_Spec : Node_Id; begin -- Determine the entity being renamed, which is the target of the -- call statement. If the name is an explicit dereference, this is -- a renaming of a subprogram type rather than a subprogram. The -- name itself is fully analyzed. if Nkind (Nam) = N_Selected_Component then Old_S := Entity (Selector_Name (Nam)); elsif Nkind (Nam) = N_Explicit_Dereference then Old_S := Etype (Nam); elsif Nkind (Nam) = N_Indexed_Component then if Is_Entity_Name (Prefix (Nam)) then Old_S := Entity (Prefix (Nam)); else Old_S := Entity (Selector_Name (Prefix (Nam))); end if; elsif Nkind (Nam) = N_Character_Literal then Old_S := Etype (New_S); else Old_S := Entity (Nam); end if; if Is_Entity_Name (Nam) then -- If the renamed entity is a predefined operator, retain full -- name to ensure its visibility. if Ekind (Old_S) = E_Operator and then Nkind (Nam) = N_Expanded_Name then Call_Name := New_Copy (Name (N)); else Call_Name := New_Reference_To (Old_S, Loc); end if; else Call_Name := New_Copy (Name (N)); -- The original name may have been overloaded, but -- is fully resolved now. Set_Is_Overloaded (Call_Name, False); end if; -- For simple renamings, subsequent calls can be expanded directly -- as called to the renamed entity. The body must be generated in -- any case for calls they may appear elsewhere. if (Ekind (Old_S) = E_Function or else Ekind (Old_S) = E_Procedure) and then Nkind (Decl) = N_Subprogram_Declaration then Set_Body_To_Inline (Decl, Old_S); end if; -- The body generated for this renaming is an internal artifact, and -- does not constitute a freeze point for the called entity. Set_Must_Not_Freeze (Call_Name); Formal := First_Formal (Defining_Entity (Decl)); if Present (Formal) then Actuals := New_List; while Present (Formal) loop Append (New_Reference_To (Formal, Loc), Actuals); Next_Formal (Formal); end loop; end if; -- If the renamed entity is an entry, inherit its profile. For -- other renamings as bodies, both profiles must be subtype -- conformant, so it is not necessary to replace the profile given -- in the declaration. However, default values that are aggregates -- are rewritten when partially analyzed, so we recover the original -- aggregate to insure that subsequent conformity checking works. -- Similarly, if the default expression was constant-folded, recover -- the original expression. Formal := First_Formal (Defining_Entity (Decl)); if Present (Formal) then O_Formal := First_Formal (Old_S); Param_Spec := First (Parameter_Specifications (Spec)); while Present (Formal) loop if Is_Entry (Old_S) then if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then Set_Etype (Formal, Etype (O_Formal)); Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal)); end if; elsif Nkind (Default_Value (O_Formal)) = N_Aggregate or else Nkind (Original_Node (Default_Value (O_Formal))) /= Nkind (Default_Value (O_Formal)) then Set_Expression (Param_Spec, New_Copy_Tree (Original_Node (Default_Value (O_Formal)))); end if; Next_Formal (Formal); Next_Formal (O_Formal); Next (Param_Spec); end loop; end if; -- If the renamed entity is a function, the generated body contains a -- return statement. Otherwise, build a procedure call. If the entity is -- an entry, subsequent analysis of the call will transform it into the -- proper entry or protected operation call. If the renamed entity is -- a character literal, return it directly. if Ekind (Old_S) = E_Function or else Ekind (Old_S) = E_Operator or else (Ekind (Old_S) = E_Subprogram_Type and then Etype (Old_S) /= Standard_Void_Type) then Call_Node := Make_Return_Statement (Loc, Expression => Make_Function_Call (Loc, Name => Call_Name, Parameter_Associations => Actuals)); elsif Ekind (Old_S) = E_Enumeration_Literal then Call_Node := Make_Return_Statement (Loc, Expression => New_Occurrence_Of (Old_S, Loc)); elsif Nkind (Nam) = N_Character_Literal then Call_Node := Make_Return_Statement (Loc, Expression => Call_Name); else Call_Node := Make_Procedure_Call_Statement (Loc, Name => Call_Name, Parameter_Associations => Actuals); end if; -- Create entities for subprogram body and formals. Set_Defining_Unit_Name (Spec, Make_Defining_Identifier (Loc, Chars => Chars (New_S))); Param_Spec := First (Parameter_Specifications (Spec)); while Present (Param_Spec) loop Set_Defining_Identifier (Param_Spec, Make_Defining_Identifier (Loc, Chars => Chars (Defining_Identifier (Param_Spec)))); Next (Param_Spec); end loop; Body_Node := Make_Subprogram_Body (Loc, Specification => Spec, Declarations => New_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Call_Node))); if Nkind (Decl) /= N_Subprogram_Declaration then Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Specification (N))); end if; -- Link the body to the entity whose declaration it completes. If -- the body is analyzed when the renamed entity is frozen, it may be -- necessary to restore the proper scope (see package Exp_Ch13). if Nkind (N) = N_Subprogram_Renaming_Declaration and then Present (Corresponding_Spec (N)) then Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N)); else Set_Corresponding_Spec (Body_Node, New_S); end if; return Body_Node; end Build_Renamed_Body; ----------------------------- -- Check_Compile_Time_Size -- ----------------------------- procedure Check_Compile_Time_Size (T : Entity_Id) is procedure Set_Small_Size (S : Uint); -- Sets the compile time known size (32 bits or less) in the Esize -- field, checking for a size clause that was given which attempts -- to give a smaller size. function Size_Known (T : Entity_Id) return Boolean; -- Recursive function that does all the work function Static_Discriminated_Components (T : Entity_Id) return Boolean; -- If T is a constrained subtype, its size is not known if any of its -- discriminant constraints is not static and it is not a null record. -- The test is conservative and doesn't check that the components are -- in fact constrained by non-static discriminant values. Could be made -- more precise ??? -------------------- -- Set_Small_Size -- -------------------- procedure Set_Small_Size (S : Uint) is begin if S > 32 then return; elsif Has_Size_Clause (T) then if RM_Size (T) < S then Error_Msg_Uint_1 := S; Error_Msg_NE ("size for & is too small, minimum is ^", Size_Clause (T), T); elsif Unknown_Esize (T) then Set_Esize (T, S); end if; -- Set sizes if not set already else if Unknown_Esize (T) then Set_Esize (T, S); end if; if Unknown_RM_Size (T) then Set_RM_Size (T, S); end if; end if; end Set_Small_Size; ---------------- -- Size_Known -- ---------------- function Size_Known (T : Entity_Id) return Boolean is Index : Entity_Id; Comp : Entity_Id; Ctyp : Entity_Id; Low : Node_Id; High : Node_Id; begin if Size_Known_At_Compile_Time (T) then return True; elsif Is_Scalar_Type (T) or else Is_Task_Type (T) then return not Is_Generic_Type (T); elsif Is_Array_Type (T) then if Ekind (T) = E_String_Literal_Subtype then Set_Small_Size (Component_Size (T) * String_Literal_Length (T)); return True; elsif not Is_Constrained (T) then return False; -- Don't do any recursion on type with error posted, since -- we may have a malformed type that leads us into a loop elsif Error_Posted (T) then return False; elsif not Size_Known (Component_Type (T)) then return False; end if; -- Check for all indexes static, and also compute possible -- size (in case it is less than 32 and may be packable). declare Esiz : Uint := Component_Size (T); Dim : Uint; begin Index := First_Index (T); while Present (Index) loop if Nkind (Index) = N_Range then Get_Index_Bounds (Index, Low, High); elsif Error_Posted (Scalar_Range (Etype (Index))) then return False; else Low := Type_Low_Bound (Etype (Index)); High := Type_High_Bound (Etype (Index)); end if; if not Compile_Time_Known_Value (Low) or else not Compile_Time_Known_Value (High) or else Etype (Index) = Any_Type then return False; else Dim := Expr_Value (High) - Expr_Value (Low) + 1; if Dim >= 0 then Esiz := Esiz * Dim; else Esiz := Uint_0; end if; end if; Next_Index (Index); end loop; Set_Small_Size (Esiz); return True; end; elsif Is_Access_Type (T) then return True; elsif Is_Private_Type (T) and then not Is_Generic_Type (T) and then Present (Underlying_Type (T)) then -- Don't do any recursion on type with error posted, since -- we may have a malformed type that leads us into a loop if Error_Posted (T) then return False; else return Size_Known (Underlying_Type (T)); end if; elsif Is_Record_Type (T) then if Is_Class_Wide_Type (T) then return False; elsif T /= Base_Type (T) then return Size_Known_At_Compile_Time (Base_Type (T)) and then Static_Discriminated_Components (T); -- Don't do any recursion on type with error posted, since -- we may have a malformed type that leads us into a loop elsif Error_Posted (T) then return False; else declare Packed_Size_Known : Boolean := Is_Packed (T); Packed_Size : Uint := Uint_0; begin -- Test for variant part present if Has_Discriminants (T) and then Present (Parent (T)) and then Nkind (Parent (T)) = N_Full_Type_Declaration and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition and then not Null_Present (Type_Definition (Parent (T))) and then Present (Variant_Part (Component_List (Type_Definition (Parent (T))))) then -- If variant part is present, and type is unconstrained, -- then we must have defaulted discriminants, or a size -- clause must be present for the type, or else the size -- is definitely not known at compile time. if not Is_Constrained (T) and then No (Discriminant_Default_Value (First_Discriminant (T))) and then Unknown_Esize (T) then return False; else -- We do not know the packed size, it is too much -- trouble to figure it out. Packed_Size_Known := False; end if; end if; Comp := First_Entity (T); while Present (Comp) loop if Ekind (Comp) = E_Component or else Ekind (Comp) = E_Discriminant then Ctyp := Etype (Comp); if Present (Component_Clause (Comp)) then Packed_Size_Known := False; end if; if not Size_Known (Ctyp) then return False; elsif Packed_Size_Known then -- If RM_Size is known and static, then we can -- keep accumulating the packed size. if Known_Static_RM_Size (Ctyp) then -- A little glitch, to be removed sometime ??? -- gigi does not understand zero sizes yet. if RM_Size (Ctyp) = Uint_0 then Packed_Size_Known := False; end if; Packed_Size := Packed_Size + RM_Size (Ctyp); -- If we have a field whose RM_Size is not known -- then we can't figure out the packed size here. else Packed_Size_Known := False; end if; end if; end if; Next_Entity (Comp); end loop; if Packed_Size_Known then Set_Small_Size (Packed_Size); end if; return True; end; end if; else return False; end if; end Size_Known; ------------------------------------- -- Static_Discriminated_Components -- ------------------------------------- function Static_Discriminated_Components (T : Entity_Id) return Boolean is Constraint : Elmt_Id; begin if Has_Discriminants (T) and then Present (Discriminant_Constraint (T)) and then Present (First_Component (T)) then Constraint := First_Elmt (Discriminant_Constraint (T)); while Present (Constraint) loop if not Compile_Time_Known_Value (Node (Constraint)) then return False; end if; Next_Elmt (Constraint); end loop; end if; return True; end Static_Discriminated_Components; -- Start of processing for Check_Compile_Time_Size begin Set_Size_Known_At_Compile_Time (T, Size_Known (T)); end Check_Compile_Time_Size; ----------------------------- -- Check_Debug_Info_Needed -- ----------------------------- procedure Check_Debug_Info_Needed (T : Entity_Id) is begin if Needs_Debug_Info (T) or else Debug_Info_Off (T) then return; elsif Comes_From_Source (T) or else Debug_Generated_Code or else Debug_Flag_VV then Set_Debug_Info_Needed (T); end if; end Check_Debug_Info_Needed; ---------------------------- -- Check_Strict_Alignment -- ---------------------------- procedure Check_Strict_Alignment (E : Entity_Id) is Comp : Entity_Id; begin if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then Set_Strict_Alignment (E); elsif Is_Array_Type (E) then Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E))); elsif Is_Record_Type (E) then if Is_Limited_Record (E) then Set_Strict_Alignment (E); return; end if; Comp := First_Component (E); while Present (Comp) loop if not Is_Type (Comp) and then (Strict_Alignment (Etype (Comp)) or else Is_Aliased (Comp)) then Set_Strict_Alignment (E); return; end if; Next_Component (Comp); end loop; end if; end Check_Strict_Alignment; ------------------------- -- Check_Unsigned_Type -- ------------------------- procedure Check_Unsigned_Type (E : Entity_Id) is Ancestor : Entity_Id; Lo_Bound : Node_Id; Btyp : Entity_Id; begin if not Is_Discrete_Or_Fixed_Point_Type (E) then return; end if; -- Do not attempt to analyze case where range was in error if Error_Posted (Scalar_Range (E)) then return; end if; -- The situation that is non trivial is something like -- subtype x1 is integer range -10 .. +10; -- subtype x2 is x1 range 0 .. V1; -- subtype x3 is x2 range V2 .. V3; -- subtype x4 is x3 range V4 .. V5; -- where Vn are variables. Here the base type is signed, but we still -- know that x4 is unsigned because of the lower bound of x2. -- The only way to deal with this is to look up the ancestor chain Ancestor := E; loop if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then return; end if; Lo_Bound := Type_Low_Bound (Ancestor); if Compile_Time_Known_Value (Lo_Bound) then if Expr_Rep_Value (Lo_Bound) >= 0 then Set_Is_Unsigned_Type (E, True); end if; return; else Ancestor := Ancestor_Subtype (Ancestor); -- If no ancestor had a static lower bound, go to base type if No (Ancestor) then -- Note: the reason we still check for a compile time known -- value for the base type is that at least in the case of -- generic formals, we can have bounds that fail this test, -- and there may be other cases in error situations. Btyp := Base_Type (E); if Btyp = Any_Type or else Etype (Btyp) = Any_Type then return; end if; Lo_Bound := Type_Low_Bound (Base_Type (E)); if Compile_Time_Known_Value (Lo_Bound) and then Expr_Rep_Value (Lo_Bound) >= 0 then Set_Is_Unsigned_Type (E, True); end if; return; end if; end if; end loop; end Check_Unsigned_Type; ---------------- -- Freeze_All -- ---------------- -- Note: the easy coding for this procedure would be to just build a -- single list of freeze nodes and then insert them and analyze them -- all at once. This won't work, because the analysis of earlier freeze -- nodes may recursively freeze types which would otherwise appear later -- on in the freeze list. So we must analyze and expand the freeze nodes -- as they are generated. procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is Loc : constant Source_Ptr := Sloc (After); E : Entity_Id; Decl : Node_Id; procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id); -- This is the internal recursive routine that does freezing of -- entities (but NOT the analysis of default expressions, which -- should not be recursive, we don't want to analyze those till -- we are sure that ALL the types are frozen). procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is E : Entity_Id; Flist : List_Id; Lastn : Node_Id; procedure Process_Flist; -- If freeze nodes are present, insert and analyze, and reset -- cursor for next insertion. procedure Process_Flist is begin if Is_Non_Empty_List (Flist) then Lastn := Next (After); Insert_List_After_And_Analyze (After, Flist); if Present (Lastn) then After := Prev (Lastn); else After := Last (List_Containing (After)); end if; end if; end Process_Flist; begin E := From; while Present (E) loop -- If the entity is an inner package which is not a package -- renaming, then its entities must be frozen at this point. -- Note that such entities do NOT get frozen at the end of -- the nested package itself (only library packages freeze). -- Same is true for task declarations, where anonymous records -- created for entry parameters must be frozen. if Ekind (E) = E_Package and then No (Renamed_Object (E)) and then not Is_Child_Unit (E) and then not Is_Frozen (E) then New_Scope (E); Install_Visible_Declarations (E); Install_Private_Declarations (E); Freeze_All (First_Entity (E), After); End_Package_Scope (E); elsif Ekind (E) in Task_Kind and then (Nkind (Parent (E)) = N_Task_Type_Declaration or else Nkind (Parent (E)) = N_Single_Task_Declaration) then New_Scope (E); Freeze_All (First_Entity (E), After); End_Scope; -- For a derived tagged type, we must ensure that all the -- primitive operations of the parent have been frozen, so -- that their addresses will be in the parent's dispatch table -- at the point it is inherited. elsif Ekind (E) = E_Record_Type and then Is_Tagged_Type (E) and then Is_Tagged_Type (Etype (E)) and then Is_Derived_Type (E) then declare Prim_List : constant Elist_Id := Primitive_Operations (Etype (E)); Prim : Elmt_Id; Subp : Entity_Id; begin Prim := First_Elmt (Prim_List); while Present (Prim) loop Subp := Node (Prim); if Comes_From_Source (Subp) and then not Is_Frozen (Subp) then Flist := Freeze_Entity (Subp, Loc); Process_Flist; end if; Next_Elmt (Prim); end loop; end; end if; if not Is_Frozen (E) then Flist := Freeze_Entity (E, Loc); Process_Flist; end if; Next_Entity (E); end loop; end Freeze_All_Ent; -- Start of processing for Freeze_All begin Freeze_All_Ent (From, After); -- Now that all types are frozen, we can deal with default expressions -- that require us to build a default expression functions. This is the -- point at which such functions are constructed (after all types that -- might be used in such expressions have been frozen). -- We also add finalization chains to access types whose designated -- types are controlled. This is normally done when freezing the type, -- but this misses recursive type definitions where the later members -- of the recursion introduce controlled components (e.g. 5624-001). -- Loop through entities E := From; while Present (E) loop if Is_Subprogram (E) then if not Default_Expressions_Processed (E) then Process_Default_Expressions (E, After); end if; if not Has_Completion (E) then Decl := Unit_Declaration_Node (E); if Nkind (Decl) = N_Subprogram_Renaming_Declaration then Build_And_Analyze_Renamed_Body (Decl, E, After); elsif Nkind (Decl) = N_Subprogram_Declaration and then Present (Corresponding_Body (Decl)) and then Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) = N_Subprogram_Renaming_Declaration then Build_And_Analyze_Renamed_Body (Decl, Corresponding_Body (Decl), After); end if; end if; elsif Ekind (E) in Task_Kind and then (Nkind (Parent (E)) = N_Task_Type_Declaration or else Nkind (Parent (E)) = N_Single_Task_Declaration) then declare Ent : Entity_Id; begin Ent := First_Entity (E); while Present (Ent) loop if Is_Entry (Ent) and then not Default_Expressions_Processed (Ent) then Process_Default_Expressions (Ent, After); end if; Next_Entity (Ent); end loop; end; elsif Is_Access_Type (E) and then Comes_From_Source (E) and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type and then Controlled_Type (Designated_Type (E)) and then No (Associated_Final_Chain (E)) then Build_Final_List (Parent (E), E); end if; Next_Entity (E); end loop; end Freeze_All; ----------------------- -- Freeze_And_Append -- ----------------------- procedure Freeze_And_Append (Ent : Entity_Id; Loc : Source_Ptr; Result : in out List_Id) is L : constant List_Id := Freeze_Entity (Ent, Loc); begin if Is_Non_Empty_List (L) then if Result = No_List then Result := L; else Append_List (L, Result); end if; end if; end Freeze_And_Append; ------------------- -- Freeze_Before -- ------------------- procedure Freeze_Before (N : Node_Id; T : Entity_Id) is Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N)); F : Node_Id; begin if Is_Non_Empty_List (Freeze_Nodes) then F := First (Freeze_Nodes); if Present (F) then Insert_Actions (N, Freeze_Nodes); end if; end if; end Freeze_Before; ------------------- -- Freeze_Entity -- ------------------- function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is Comp : Entity_Id; F_Node : Node_Id; Result : List_Id; Indx : Node_Id; Formal : Entity_Id; Atype : Entity_Id; procedure Check_Current_Instance (Comp_Decl : Node_Id); -- Check that an Access or Unchecked_Access attribute with -- a prefix which is the current instance type can only be -- applied when the type is limited. function After_Last_Declaration return Boolean; -- If Loc is a freeze_entity that appears after the last declaration -- in the scope, inhibit error messages on late completion. procedure Freeze_Record_Type (Rec : Entity_Id); -- Freeze each component, handle some representation clauses, and -- freeze primitive operations if this is a tagged type. ---------------------------- -- After_Last_Declaration -- ---------------------------- function After_Last_Declaration return Boolean is Spec : Node_Id := Parent (Current_Scope); begin if Nkind (Spec) = N_Package_Specification then if Present (Private_Declarations (Spec)) then return Loc >= Sloc (Last (Private_Declarations (Spec))); elsif Present (Visible_Declarations (Spec)) then return Loc >= Sloc (Last (Visible_Declarations (Spec))); else return False; end if; else return False; end if; end After_Last_Declaration; ---------------------------- -- Check_Current_Instance -- ---------------------------- procedure Check_Current_Instance (Comp_Decl : Node_Id) is function Process (N : Node_Id) return Traverse_Result; -- Process routine to apply check to given node. function Process (N : Node_Id) return Traverse_Result is begin case Nkind (N) is when N_Attribute_Reference => if (Attribute_Name (N) = Name_Access or else Attribute_Name (N) = Name_Unchecked_Access) and then Is_Entity_Name (Prefix (N)) and then Is_Type (Entity (Prefix (N))) and then Entity (Prefix (N)) = E then Error_Msg_N ("current instance must be a limited type", Prefix (N)); return Abandon; else return OK; end if; when others => return OK; end case; end Process; procedure Traverse is new Traverse_Proc (Process); -- Start of processing for Check_Current_Instance begin Traverse (Comp_Decl); end Check_Current_Instance; ------------------------ -- Freeze_Record_Type -- ------------------------ procedure Freeze_Record_Type (Rec : Entity_Id) is Comp : Entity_Id; Junk : Boolean; ADC : Node_Id; Unplaced_Component : Boolean := False; -- Set True if we find at least one component with no component -- clause (used to warn about useless Pack pragmas). Placed_Component : Boolean := False; -- Set True if we find at least one component with a component -- clause (used to warn about useless Bit_Order pragmas). begin -- Freeze components and embedded subtypes Comp := First_Entity (Rec); while Present (Comp) loop if not Is_Type (Comp) then Freeze_And_Append (Etype (Comp), Loc, Result); end if; -- If the component is an access type with an allocator -- as default value, the designated type will be frozen -- by the corresponding expression in init_proc. In order -- to place the freeze node for the designated type before -- that for the current record type, freeze it now. -- Same process if the component is an array of access types, -- initialized with an aggregate. If the designated type is -- private, it cannot contain allocators, and it is premature -- to freeze the type, so we check for this as well. if Is_Access_Type (Etype (Comp)) and then Present (Parent (Comp)) and then Present (Expression (Parent (Comp))) and then Nkind (Expression (Parent (Comp))) = N_Allocator then declare Alloc : constant Node_Id := Expression (Parent (Comp)); begin -- If component is pointer to a classwide type, freeze -- the specific type in the expression being allocated. -- The expression may be a subtype indication, in which -- case freeze the subtype mark. if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then if Is_Entity_Name (Expression (Alloc)) then Freeze_And_Append (Entity (Expression (Alloc)), Loc, Result); elsif Nkind (Expression (Alloc)) = N_Subtype_Indication then Freeze_And_Append (Entity (Subtype_Mark (Expression (Alloc))), Loc, Result); end if; else Freeze_And_Append (Designated_Type (Etype (Comp)), Loc, Result); end if; end; -- If this is a constrained subtype of an already frozen type, -- make the subtype frozen as well. It might otherwise be frozen -- in the wrong scope, and a freeze node on subtype has no effect. elsif Is_Access_Type (Etype (Comp)) and then not Is_Frozen (Designated_Type (Etype (Comp))) and then Is_Itype (Designated_Type (Etype (Comp))) and then Is_Frozen (Base_Type (Designated_Type (Etype (Comp)))) then Set_Is_Frozen (Designated_Type (Etype (Comp))); elsif Is_Array_Type (Etype (Comp)) and then Is_Access_Type (Component_Type (Etype (Comp))) and then Present (Parent (Comp)) and then Nkind (Parent (Comp)) = N_Component_Declaration and then Present (Expression (Parent (Comp))) and then Nkind (Expression (Parent (Comp))) = N_Aggregate and then Is_Fully_Defined (Designated_Type (Component_Type (Etype (Comp)))) then Freeze_And_Append (Designated_Type (Component_Type (Etype (Comp))), Loc, Result); end if; -- Processing for real components (exclude anonymous subtypes) if Ekind (Comp) = E_Component or else Ekind (Comp) = E_Discriminant then -- Check for error of component clause given for variable -- sized type. We have to delay this test till this point, -- since the component type has to be frozen for us to know -- if it is variable length. We omit this test in a generic -- context, it will be applied at instantiation time. declare CC : constant Node_Id := Component_Clause (Comp); begin if Present (CC) then Placed_Component := True; if Inside_A_Generic then null; elsif not Size_Known_At_Compile_Time (Underlying_Type (Etype (Comp))) then Error_Msg_N ("component clause not allowed for variable " & "length component", CC); end if; else Unplaced_Component := True; end if; end; -- If component clause is present, then deal with the -- non-default bit order case. We cannot do this before -- the freeze point, because there is no required order -- for the component clause and the bit_order clause. -- We only do this processing for the base type, and in -- fact that's important, since otherwise if there are -- record subtypes, we could reverse the bits once for -- each subtype, which would be incorrect. if Present (Component_Clause (Comp)) and then Reverse_Bit_Order (Rec) and then Ekind (E) = E_Record_Type then declare CFB : constant Uint := Component_Bit_Offset (Comp); CSZ : constant Uint := Esize (Comp); CLC : constant Node_Id := Component_Clause (Comp); Pos : constant Node_Id := Position (CLC); FB : constant Node_Id := First_Bit (CLC); Storage_Unit_Offset : constant Uint := CFB / System_Storage_Unit; Start_Bit : constant Uint := CFB mod System_Storage_Unit; begin -- Cases where field goes over storage unit boundary if Start_Bit + CSZ > System_Storage_Unit then -- Allow multi-byte field but generate warning if Start_Bit mod System_Storage_Unit = 0 and then CSZ mod System_Storage_Unit = 0 then Error_Msg_N ("multi-byte field specified with non-standard" & " Bit_Order?", CLC); if Bytes_Big_Endian then Error_Msg_N ("bytes are not reversed " & "(component is big-endian)?", CLC); else Error_Msg_N ("bytes are not reversed " & "(component is little-endian)?", CLC); end if; -- Do not allow non-contiguous field else Error_Msg_N ("attempt to specify non-contiguous field" & " not permitted", CLC); Error_Msg_N ("\(caused by non-standard Bit_Order " & "specified)", CLC); end if; -- Case where field fits in one storage unit else -- Give warning if suspicious component clause if Intval (FB) >= System_Storage_Unit then Error_Msg_N ("?Bit_Order clause does not affect " & "byte ordering", Pos); Error_Msg_Uint_1 := Intval (Pos) + Intval (FB) / System_Storage_Unit; Error_Msg_N ("?position normalized to ^ before bit " & "order interpreted", Pos); end if; -- Here is where we fix up the Component_Bit_Offset -- value to account for the reverse bit order. -- Some examples of what needs to be done are: -- First_Bit .. Last_Bit Component_Bit_Offset -- old new old new -- 0 .. 0 7 .. 7 0 7 -- 0 .. 1 6 .. 7 0 6 -- 0 .. 2 5 .. 7 0 5 -- 0 .. 7 0 .. 7 0 4 -- 1 .. 1 6 .. 6 1 6 -- 1 .. 4 3 .. 6 1 3 -- 4 .. 7 0 .. 3 4 0 -- The general rule is that the first bit is -- is obtained by subtracting the old ending bit -- from storage_unit - 1. Set_Component_Bit_Offset (Comp, (Storage_Unit_Offset * System_Storage_Unit) + (System_Storage_Unit - 1) - (Start_Bit + CSZ - 1)); Set_Normalized_First_Bit (Comp, Component_Bit_Offset (Comp) mod System_Storage_Unit); end if; end; end if; end if; Next_Entity (Comp); end loop; -- Check for useless pragma Bit_Order if not Placed_Component and then Reverse_Bit_Order (Rec) then ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order); Error_Msg_N ("?Bit_Order specification has no effect", ADC); Error_Msg_N ("\?since no component clauses were specified", ADC); end if; -- Check for useless pragma Pack when all components placed if Is_Packed (Rec) and then not Unplaced_Component and then Warn_On_Redundant_Constructs then Error_Msg_N ("?pragma Pack has no effect, no unplaced components", Get_Rep_Pragma (Rec, Name_Pack)); Set_Is_Packed (Rec, False); end if; -- If this is the record corresponding to a remote type, -- freeze the remote type here since that is what we are -- semantically freeing. This prevents having the freeze node -- for that type in an inner scope. -- Also, Check for controlled components and unchecked unions. -- Finally, enforce the restriction that access attributes with -- a current instance prefix can only apply to limited types. if Ekind (Rec) = E_Record_Type then if Present (Corresponding_Remote_Type (Rec)) then Freeze_And_Append (Corresponding_Remote_Type (Rec), Loc, Result); end if; Comp := First_Component (Rec); while Present (Comp) loop if Has_Controlled_Component (Etype (Comp)) or else (Chars (Comp) /= Name_uParent and then Is_Controlled (Etype (Comp))) or else (Is_Protected_Type (Etype (Comp)) and then Present (Corresponding_Record_Type (Etype (Comp))) and then Has_Controlled_Component (Corresponding_Record_Type (Etype (Comp)))) then Set_Has_Controlled_Component (Rec); exit; end if; if Has_Unchecked_Union (Etype (Comp)) then Set_Has_Unchecked_Union (Rec); end if; if Has_Per_Object_Constraint (Comp) and then not Is_Limited_Type (Rec) then -- Scan component declaration for likely misuses of -- current instance, either in a constraint or in a -- default expression. Check_Current_Instance (Parent (Comp)); end if; Next_Component (Comp); end loop; end if; Set_Component_Alignment_If_Not_Set (Rec); -- For first subtypes, check if there are any fixed-point -- fields with component clauses, where we must check the size. -- This is not done till the freeze point, since for fixed-point -- types, we do not know the size until the type is frozen. if Is_First_Subtype (Rec) then Comp := First_Component (Rec); while Present (Comp) loop if Present (Component_Clause (Comp)) and then Is_Fixed_Point_Type (Etype (Comp)) then Check_Size (Component_Clause (Comp), Etype (Comp), Esize (Comp), Junk); end if; Next_Component (Comp); end loop; end if; end Freeze_Record_Type; -- Start of processing for Freeze_Entity begin -- Do not freeze if already frozen since we only need one freeze node. if Is_Frozen (E) then return No_List; -- It is improper to freeze an external entity within a generic -- because its freeze node will appear in a non-valid context. -- ??? We should probably freeze the entity at that point and insert -- the freeze node in a proper place but this proper place is not -- easy to find, and the proper scope is not easy to restore. For -- now, just wait to get out of the generic to freeze ??? elsif Inside_A_Generic and then External_Ref_In_Generic (E) then return No_List; -- Do not freeze a global entity within an inner scope created during -- expansion. A call to subprogram E within some internal procedure -- (a stream attribute for example) might require freezing E, but the -- freeze node must appear in the same declarative part as E itself. -- The two-pass elaboration mechanism in gigi guarantees that E will -- be frozen before the inner call is elaborated. We exclude constants -- from this test, because deferred constants may be frozen early, and -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram -- comes from source, or is a generic instance, then the freeze point -- is the one mandated by the language. and we freze the entity. elsif In_Open_Scopes (Scope (E)) and then Scope (E) /= Current_Scope and then Ekind (E) /= E_Constant then declare S : Entity_Id := Current_Scope; begin while Present (S) loop if Is_Overloadable (S) then if Comes_From_Source (S) or else Is_Generic_Instance (S) then exit; else return No_List; end if; end if; S := Scope (S); end loop; end; end if; -- Here to freeze the entity Result := No_List; Set_Is_Frozen (E); -- Case of entity being frozen is other than a type if not Is_Type (E) then -- If entity is exported or imported and does not have an external -- name, now is the time to provide the appropriate default name. -- Skip this if the entity is stubbed, since we don't need a name -- for any stubbed routine. if (Is_Imported (E) or else Is_Exported (E)) and then No (Interface_Name (E)) and then Convention (E) /= Convention_Stubbed then Set_Encoded_Interface_Name (E, Get_Default_External_Name (E)); end if; -- For a subprogram, freeze all parameter types and also the return -- type (RM 13.14(13)). However skip this for internal subprograms. -- This is also the point where any extra formal parameters are -- created since we now know whether the subprogram will use -- a foreign convention. if Is_Subprogram (E) then if not Is_Internal (E) then declare F_Type : Entity_Id; function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean; -- Determines if given type entity is a fat pointer type -- used as an argument type or return type to a subprogram -- with C or C++ convention set. -------------------------- -- Is_Fat_C_Access_Type -- -------------------------- function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is begin return (Convention (E) = Convention_C or else Convention (E) = Convention_CPP) and then Is_Access_Type (T) and then Esize (T) > Ttypes.System_Address_Size; end Is_Fat_C_Ptr_Type; begin -- Loop through formals Formal := First_Formal (E); while Present (Formal) loop F_Type := Etype (Formal); Freeze_And_Append (F_Type, Loc, Result); if Is_Private_Type (F_Type) and then Is_Private_Type (Base_Type (F_Type)) and then No (Full_View (Base_Type (F_Type))) and then not Is_Generic_Type (F_Type) and then not Is_Derived_Type (F_Type) then -- If the type of a formal is incomplete, subprogram -- is being frozen prematurely. Within an instance -- (but not within a wrapper package) this is an -- an artifact of our need to regard the end of an -- instantiation as a freeze point. Otherwise it is -- a definite error. -- and then not Is_Wrapper_Package (Current_Scope) ??? if In_Instance then Set_Is_Frozen (E, False); return No_List; elsif not After_Last_Declaration then Error_Msg_Node_1 := F_Type; Error_Msg ("type& must be fully defined before this point", Loc); end if; end if; -- Check bad use of fat C pointer if Is_Fat_C_Ptr_Type (F_Type) then Error_Msg_Qual_Level := 1; Error_Msg_N ("?type of & does not correspond to C pointer", Formal); Error_Msg_Qual_Level := 0; end if; -- Check for unconstrained array in exported foreign -- convention case. if Convention (E) in Foreign_Convention and then not Is_Imported (E) and then Is_Array_Type (F_Type) and then not Is_Constrained (F_Type) then Error_Msg_Qual_Level := 1; Error_Msg_N ("?type of argument& is unconstrained array", Formal); Error_Msg_N ("?foreign caller must pass bounds explicitly", Formal); Error_Msg_Qual_Level := 0; end if; Next_Formal (Formal); end loop; -- Check return type if Ekind (E) = E_Function then Freeze_And_Append (Etype (E), Loc, Result); if Is_Fat_C_Ptr_Type (Etype (E)) then Error_Msg_N ("?return type of& does not correspond to C pointer", E); elsif Is_Array_Type (Etype (E)) and then not Is_Constrained (Etype (E)) and then not Is_Imported (E) and then Convention (E) in Foreign_Convention then Error_Msg_N ("foreign convention function may not " & "return unconstrained array", E); end if; end if; end; end if; -- Must freeze its parent first if it is a derived subprogram if Present (Alias (E)) then Freeze_And_Append (Alias (E), Loc, Result); end if; -- If the return type requires a transient scope, and we are on -- a target allowing functions to return with a depressed stack -- pointer, then we mark the function as requiring this treatment. if Ekind (E) = E_Function and then Functions_Return_By_DSP_On_Target and then Requires_Transient_Scope (Etype (E)) then Set_Function_Returns_With_DSP (E); end if; if not Is_Internal (E) then Freeze_Subprogram (E); end if; -- Here for other than a subprogram or type else -- If entity has a type, and it is not a generic unit, then -- freeze it first (RM 13.14(10)) if Present (Etype (E)) and then Ekind (E) /= E_Generic_Function then Freeze_And_Append (Etype (E), Loc, Result); end if; -- For object created by object declaration, perform required -- categorization (preelaborate and pure) checks. Defer these -- checks to freeze time since pragma Import inhibits default -- initialization and thus pragma Import affects these checks. if Nkind (Declaration_Node (E)) = N_Object_Declaration then Validate_Object_Declaration (Declaration_Node (E)); end if; -- Check that a constant which has a pragma Volatile[_Components] -- or Atomic[_Components] also has a pragma Import (RM C.6(13)) -- Note: Atomic[_Components] also sets Volatile[_Components] if Ekind (E) = E_Constant and then (Has_Volatile_Components (E) or else Is_Volatile (E)) and then not Is_Imported (E) then -- Make sure we actually have a pragma, and have not merely -- inherited the indication from elsewhere (e.g. an address -- clause, which is not good enough in RM terms!) if Present (Get_Rep_Pragma (E, Name_Atomic)) or else Present (Get_Rep_Pragma (E, Name_Atomic_Components)) or else Present (Get_Rep_Pragma (E, Name_Volatile)) or else Present (Get_Rep_Pragma (E, Name_Volatile_Components)) then Error_Msg_N ("stand alone atomic/volatile constant must be imported", E); end if; end if; -- Static objects require special handling if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable) and then Is_Statically_Allocated (E) then Freeze_Static_Object (E); end if; -- Remaining step is to layout objects if Ekind (E) = E_Variable or else Ekind (E) = E_Constant or else Ekind (E) = E_Loop_Parameter or else Is_Formal (E) then Layout_Object (E); end if; end if; -- Case of a type or subtype being frozen else -- The type may be defined in a generic unit. This can occur when -- freezing a generic function that returns the type (which is -- defined in a parent unit). It is clearly meaningless to freeze -- this type. However, if it is a subtype, its size may be determi- -- nable and used in subsequent checks, so might as well try to -- compute it. if Present (Scope (E)) and then Is_Generic_Unit (Scope (E)) then Check_Compile_Time_Size (E); return No_List; end if; -- Deal with special cases of freezing for subtype if E /= Base_Type (E) then -- If ancestor subtype present, freeze that first. -- Note that this will also get the base type frozen. Atype := Ancestor_Subtype (E); if Present (Atype) then Freeze_And_Append (Atype, Loc, Result); -- Otherwise freeze the base type of the entity before -- freezing the entity itself, (RM 13.14(14)). elsif E /= Base_Type (E) then Freeze_And_Append (Base_Type (E), Loc, Result); end if; -- For a derived type, freeze its parent type first (RM 13.14(14)) elsif Is_Derived_Type (E) then Freeze_And_Append (Etype (E), Loc, Result); Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result); end if; -- For array type, freeze index types and component type first -- before freezing the array (RM 13.14(14)). if Is_Array_Type (E) then declare Ctyp : constant Entity_Id := Component_Type (E); Non_Standard_Enum : Boolean := False; -- Set true if any of the index types is an enumeration -- type with a non-standard representation. begin Freeze_And_Append (Ctyp, Loc, Result); Indx := First_Index (E); while Present (Indx) loop Freeze_And_Append (Etype (Indx), Loc, Result); if Is_Enumeration_Type (Etype (Indx)) and then Has_Non_Standard_Rep (Etype (Indx)) then Non_Standard_Enum := True; end if; Next_Index (Indx); end loop; -- Processing that is done only for base types if Ekind (E) = E_Array_Type then -- Propagate flags for component type if Is_Controlled (Component_Type (E)) or else Has_Controlled_Component (Ctyp) then Set_Has_Controlled_Component (E); end if; if Has_Unchecked_Union (Component_Type (E)) then Set_Has_Unchecked_Union (E); end if; -- If packing was requested or if the component size was set -- explicitly, then see if bit packing is required. This -- processing is only done for base types, since all the -- representation aspects involved are type-related. This -- is not just an optimization, if we start processing the -- subtypes, they intefere with the settings on the base -- type (this is because Is_Packed has a slightly different -- meaning before and after freezing). declare Csiz : Uint; Esiz : Uint; begin if (Is_Packed (E) or else Has_Pragma_Pack (E)) and then not Has_Atomic_Components (E) and then Known_Static_RM_Size (Ctyp) then Csiz := UI_Max (RM_Size (Ctyp), 1); elsif Known_Component_Size (E) then Csiz := Component_Size (E); elsif not Known_Static_Esize (Ctyp) then Csiz := Uint_0; else Esiz := Esize (Ctyp); -- We can set the component size if it is less than -- 16, rounding it up to the next storage unit size. if Esiz <= 8 then Csiz := Uint_8; elsif Esiz <= 16 then Csiz := Uint_16; else Csiz := Uint_0; end if; -- Set component size up to match alignment if -- it would otherwise be less than the alignment. -- This deals with cases of types whose alignment -- exceeds their sizes (padded types). if Csiz /= 0 then declare A : constant Uint := Alignment_In_Bits (Ctyp); begin if Csiz < A then Csiz := A; end if; end; end if; end if; if 1 <= Csiz and then Csiz <= 64 then -- We set the component size for all cases 1-64 Set_Component_Size (Base_Type (E), Csiz); -- Actual packing is not needed for 8,16,32,64 -- Also not needed for 24 if alignment is 1 if Csiz = 8 or else Csiz = 16 or else Csiz = 32 or else Csiz = 64 or else (Csiz = 24 and then Alignment (Ctyp) = 1) then -- Here the array was requested to be packed, but -- the packing request had no effect, so Is_Packed -- is reset. -- Note: semantically this means that we lose -- track of the fact that a derived type inherited -- a pack pragma that was non-effective, but that -- seems fine. -- We regard a Pack pragma as a request to set a -- representation characteristic, and this request -- may be ignored. Set_Is_Packed (Base_Type (E), False); -- In all other cases, packing is indeed needed else Set_Has_Non_Standard_Rep (Base_Type (E)); Set_Is_Bit_Packed_Array (Base_Type (E)); Set_Is_Packed (Base_Type (E)); end if; end if; end; -- Processing that is done only for subtypes else -- Acquire alignment from base type if Unknown_Alignment (E) then Set_Alignment (E, Alignment (Base_Type (E))); end if; end if; -- Check one common case of a size given where the array -- needs to be packed, but was not so the size cannot be -- honored. This would of course be caught by the backend, -- and indeed we don't catch all cases. The point is that -- we can give a better error message in those cases that -- we do catch with the circuitry here. if Present (Size_Clause (E)) and then Known_Static_Esize (E) and then not Has_Pragma_Pack (E) and then Number_Dimensions (E) = 1 and then not Has_Component_Size_Clause (E) and then Known_Static_Component_Size (E) then declare Lo, Hi : Node_Id; Ctyp : constant Entity_Id := Component_Type (E); begin Get_Index_Bounds (First_Index (E), Lo, Hi); if Compile_Time_Known_Value (Lo) and then Compile_Time_Known_Value (Hi) and then Known_Static_RM_Size (Ctyp) and then RM_Size (Ctyp) < 64 then declare Lov : constant Uint := Expr_Value (Lo); Hiv : constant Uint := Expr_Value (Hi); Len : constant Uint := UI_Max (Uint_0, Hiv - Lov + 1); begin if Esize (E) < Len * Component_Size (E) and then Esize (E) = Len * RM_Size (Ctyp) then Error_Msg_NE ("size given for& too small", Size_Clause (E), E); Error_Msg_N ("\explicit pragma Pack is required", Size_Clause (E)); end if; end; end if; end; end if; -- If any of the index types was an enumeration type with -- a non-standard rep clause, then we indicate that the -- array type is always packed (even if it is not bit packed). if Non_Standard_Enum then Set_Has_Non_Standard_Rep (Base_Type (E)); Set_Is_Packed (Base_Type (E)); end if; end; Set_Component_Alignment_If_Not_Set (E); -- If the array is packed, we must create the packed array -- type to be used to actually implement the type. This is -- only needed for real array types (not for string literal -- types, since they are present only for the front end). if Is_Packed (E) and then Ekind (E) /= E_String_Literal_Subtype then Create_Packed_Array_Type (E); Freeze_And_Append (Packed_Array_Type (E), Loc, Result); -- Size information of packed array type is copied to the -- array type, since this is really the representation. Set_Size_Info (E, Packed_Array_Type (E)); Set_RM_Size (E, RM_Size (Packed_Array_Type (E))); end if; -- For a class wide type, the corresponding specific type is -- frozen as well (RM 13.14(14)) elsif Is_Class_Wide_Type (E) then Freeze_And_Append (Root_Type (E), Loc, Result); -- If the Class_Wide_Type is an Itype (when type is the anonymous -- parent of a derived type) and it is a library-level entity, -- generate an itype reference for it. Otherwise, its first -- explicit reference may be in an inner scope, which will be -- rejected by the back-end. if Is_Itype (E) and then Is_Compilation_Unit (Scope (E)) then declare Ref : Node_Id := Make_Itype_Reference (Loc); begin Set_Itype (Ref, E); if No (Result) then Result := New_List (Ref); else Append (Ref, Result); end if; end; end if; -- For record (sub)type, freeze all the component types (RM -- 13.14(14). We test for E_Record_(sub)Type here, rather than -- using Is_Record_Type, because we don't want to attempt the -- freeze for the case of a private type with record extension -- (we will do that later when the full type is frozen). elsif Ekind (E) = E_Record_Type or else Ekind (E) = E_Record_Subtype then Freeze_Record_Type (E); -- For a concurrent type, freeze corresponding record type. This -- does not correpond to any specific rule in the RM, but the -- record type is essentially part of the concurrent type. -- Freeze as well all local entities. This includes record types -- created for entry parameter blocks, and whatever local entities -- may appear in the private part. elsif Is_Concurrent_Type (E) then if Present (Corresponding_Record_Type (E)) then Freeze_And_Append (Corresponding_Record_Type (E), Loc, Result); end if; Comp := First_Entity (E); while Present (Comp) loop if Is_Type (Comp) then Freeze_And_Append (Comp, Loc, Result); elsif (Ekind (Comp)) /= E_Function then Freeze_And_Append (Etype (Comp), Loc, Result); end if; Next_Entity (Comp); end loop; -- Private types are required to point to the same freeze node -- as their corresponding full views. The freeze node itself -- has to point to the partial view of the entity (because -- from the partial view, we can retrieve the full view, but -- not the reverse). However, in order to freeze correctly, -- we need to freeze the full view. If we are freezing at the -- end of a scope (or within the scope of the private type), -- the partial and full views will have been swapped, the -- full view appears first in the entity chain and the swapping -- mechanism enusres that the pointers are properly set (on -- scope exit). -- If we encounter the partial view before the full view -- (e.g. when freezing from another scope), we freeze the -- full view, and then set the pointers appropriately since -- we cannot rely on swapping to fix things up (subtypes in an -- outer scope might not get swapped). elsif Is_Incomplete_Or_Private_Type (E) and then not Is_Generic_Type (E) then -- Case of full view present if Present (Full_View (E)) then -- If full view has already been frozen, then no -- further processing is required if Is_Frozen (Full_View (E)) then Set_Has_Delayed_Freeze (E, False); Set_Freeze_Node (E, Empty); Check_Debug_Info_Needed (E); -- Otherwise freeze full view and patch the pointers else if Is_Private_Type (Full_View (E)) and then Present (Underlying_Full_View (Full_View (E))) then Freeze_And_Append (Underlying_Full_View (Full_View (E)), Loc, Result); end if; Freeze_And_Append (Full_View (E), Loc, Result); if Has_Delayed_Freeze (E) then F_Node := Freeze_Node (Full_View (E)); if Present (F_Node) then Set_Freeze_Node (E, F_Node); Set_Entity (F_Node, E); else -- {Incomplete,Private}_Subtypes -- with Full_Views constrained by discriminants Set_Has_Delayed_Freeze (E, False); Set_Freeze_Node (E, Empty); end if; end if; Check_Debug_Info_Needed (E); end if; -- AI-117 requires that the convention of a partial view -- be the same as the convention of the full view. Note -- that this is a recognized breach of privacy, but it's -- essential for logical consistency of representation, -- and the lack of a rule in RM95 was an oversight. Set_Convention (E, Convention (Full_View (E))); Set_Size_Known_At_Compile_Time (E, Size_Known_At_Compile_Time (Full_View (E))); -- Size information is copied from the full view to the -- incomplete or private view for consistency -- We skip this is the full view is not a type. This is -- very strange of course, and can only happen as a result -- of certain illegalities, such as a premature attempt to -- derive from an incomplete type. if Is_Type (Full_View (E)) then Set_Size_Info (E, Full_View (E)); Set_RM_Size (E, RM_Size (Full_View (E))); end if; return Result; -- Case of no full view present. If entity is derived or subtype, -- it is safe to freeze, correctness depends on the frozen status -- of parent. Otherwise it is either premature usage, or a Taft -- amendment type, so diagnosis is at the point of use and the -- type might be frozen later. elsif E /= Base_Type (E) or else Is_Derived_Type (E) then null; else Set_Is_Frozen (E, False); return No_List; end if; -- For access subprogram, freeze types of all formals, the return -- type was already frozen, since it is the Etype of the function. elsif Ekind (E) = E_Subprogram_Type then Formal := First_Formal (E); while Present (Formal) loop Freeze_And_Append (Etype (Formal), Loc, Result); Next_Formal (Formal); end loop; -- If the return type requires a transient scope, and we are on -- a target allowing functions to return with a depressed stack -- pointer, then we mark the function as requiring this treatment. if Functions_Return_By_DSP_On_Target and then Requires_Transient_Scope (Etype (E)) then Set_Function_Returns_With_DSP (E); end if; Freeze_Subprogram (E); -- For access to a protected subprogram, freeze the equivalent -- type (however this is not set if we are not generating code) -- or if this is an anonymous type used just for resolution). elsif Ekind (E) = E_Access_Protected_Subprogram_Type and then Operating_Mode = Generate_Code and then Present (Equivalent_Type (E)) then Freeze_And_Append (Equivalent_Type (E), Loc, Result); end if; -- Generic types are never seen by the back-end, and are also not -- processed by the expander (since the expander is turned off for -- generic processing), so we never need freeze nodes for them. if Is_Generic_Type (E) then return Result; end if; -- Some special processing for non-generic types to complete -- representation details not known till the freeze point. if Is_Fixed_Point_Type (E) then Freeze_Fixed_Point_Type (E); elsif Is_Enumeration_Type (E) then Freeze_Enumeration_Type (E); elsif Is_Integer_Type (E) then Adjust_Esize_For_Alignment (E); elsif Is_Access_Type (E) and then No (Associated_Storage_Pool (E)) then Check_Restriction (No_Standard_Storage_Pools, E); end if; -- If the current entity is an array or record subtype and has -- discriminants used to constrain it, it must not freeze, because -- Freeze_Entity nodes force Gigi to process the frozen type. if Is_Composite_Type (E) then if Is_Array_Type (E) then declare Index : Node_Id := First_Index (E); Expr1 : Node_Id; Expr2 : Node_Id; begin while Present (Index) loop if Etype (Index) /= Any_Type then Get_Index_Bounds (Index, Expr1, Expr2); for J in 1 .. 2 loop if Nkind (Expr1) = N_Identifier and then Ekind (Entity (Expr1)) = E_Discriminant then Set_Has_Delayed_Freeze (E, False); Set_Freeze_Node (E, Empty); Check_Debug_Info_Needed (E); return Result; end if; Expr1 := Expr2; end loop; end if; Next_Index (Index); end loop; end; elsif Has_Discriminants (E) and Is_Constrained (E) then declare Constraint : Elmt_Id; Expr : Node_Id; begin Constraint := First_Elmt (Discriminant_Constraint (E)); while Present (Constraint) loop Expr := Node (Constraint); if Nkind (Expr) = N_Identifier and then Ekind (Entity (Expr)) = E_Discriminant then Set_Has_Delayed_Freeze (E, False); Set_Freeze_Node (E, Empty); Check_Debug_Info_Needed (E); return Result; end if; Next_Elmt (Constraint); end loop; end; end if; -- AI-117 requires that all new primitives of a tagged type -- must inherit the convention of the full view of the type. -- Inherited and overriding operations are defined to inherit -- the convention of their parent or overridden subprogram -- (also specified in AI-117), and that will have occurred -- earlier (in Derive_Subprogram and New_Overloaded_Entity). -- Here we set the convention of primitives that are still -- convention Ada, which will ensure that any new primitives -- inherit the type's convention. Class-wide types can have -- a foreign convention inherited from their specific type, -- but are excluded from this since they don't have any -- associated primitives. if Is_Tagged_Type (E) and then not Is_Class_Wide_Type (E) and then Convention (E) /= Convention_Ada then declare Prim_List : constant Elist_Id := Primitive_Operations (E); Prim : Elmt_Id; begin Prim := First_Elmt (Prim_List); while Present (Prim) loop if Convention (Node (Prim)) = Convention_Ada then Set_Convention (Node (Prim), Convention (E)); end if; Next_Elmt (Prim); end loop; end; end if; end if; -- Generate primitive operation references for a tagged type if Is_Tagged_Type (E) and then not Is_Class_Wide_Type (E) then declare Prim_List : constant Elist_Id := Primitive_Operations (E); Prim : Elmt_Id; Ent : Entity_Id; begin Prim := First_Elmt (Prim_List); while Present (Prim) loop Ent := Node (Prim); -- If the operation is derived, get the original for -- cross-reference purposes (it is the original for -- which we want the xref, and for which the comes -- from source test needs to be performed). while Present (Alias (Ent)) loop Ent := Alias (Ent); end loop; Generate_Reference (E, Ent, 'p', Set_Ref => False); Next_Elmt (Prim); end loop; -- If we get an exception, then something peculiar has happened -- probably as a result of a previous error. Since this is only -- for non-critical cross-references, ignore the error. exception when others => null; end; end if; -- Now that all types from which E may depend are frozen, see -- if the size is known at compile time, if it must be unsigned, -- or if strict alignent is required Check_Compile_Time_Size (E); Check_Unsigned_Type (E); if Base_Type (E) = E then Check_Strict_Alignment (E); end if; -- Do not allow a size clause for a type which does not have a size -- that is known at compile time if Has_Size_Clause (E) and then not Size_Known_At_Compile_Time (E) then -- Supress this message if errors posted on E, even if we are -- in all errors mode, since this is often a junk message if not Error_Posted (E) then Error_Msg_N ("size clause not allowed for variable length type", Size_Clause (E)); end if; end if; -- Remaining process is to set/verify the representation information, -- in particular the size and alignment values. This processing is -- not required for generic types, since generic types do not play -- any part in code generation, and so the size and alignment values -- for suhc types are irrelevant. if Is_Generic_Type (E) then return Result; -- Otherwise we call the layout procedure else Layout_Type (E); end if; -- End of freeze processing for type entities end if; -- Here is where we logically freeze the current entity. If it has a -- freeze node, then this is the point at which the freeze node is -- linked into the result list. if Has_Delayed_Freeze (E) then -- If a freeze node is already allocated, use it, otherwise allocate -- a new one. The preallocation happens in the case of anonymous base -- types, where we preallocate so that we can set First_Subtype_Link. -- Note that we reset the Sloc to the current freeze location. if Present (Freeze_Node (E)) then F_Node := Freeze_Node (E); Set_Sloc (F_Node, Loc); else F_Node := New_Node (N_Freeze_Entity, Loc); Set_Freeze_Node (E, F_Node); Set_Access_Types_To_Process (F_Node, No_Elist); Set_TSS_Elist (F_Node, No_Elist); Set_Actions (F_Node, No_List); end if; Set_Entity (F_Node, E); if Result = No_List then Result := New_List (F_Node); else Append (F_Node, Result); end if; end if; -- When a type is frozen, the first subtype of the type is frozen as -- well (RM 13.14(15)). This has to be done after freezing the type, -- since obviously the first subtype depends on its own base type. if Is_Type (E) then Freeze_And_Append (First_Subtype (E), Loc, Result); -- If we just froze a tagged non-class wide record, then freeze the -- corresponding class-wide type. This must be done after the tagged -- type itself is frozen, because the class-wide type refers to the -- tagged type which generates the class. if Is_Tagged_Type (E) and then not Is_Class_Wide_Type (E) and then Present (Class_Wide_Type (E)) then Freeze_And_Append (Class_Wide_Type (E), Loc, Result); end if; end if; Check_Debug_Info_Needed (E); -- Special handling for subprograms if Is_Subprogram (E) then -- If subprogram has address clause then reset Is_Public flag, since -- we do not want the backend to generate external references. if Present (Address_Clause (E)) and then not Is_Library_Level_Entity (E) then Set_Is_Public (E, False); -- If no address clause and not intrinsic, then for imported -- subprogram in main unit, generate descriptor if we are in -- Propagate_Exceptions mode. elsif Propagate_Exceptions and then Is_Imported (E) and then not Is_Intrinsic_Subprogram (E) and then Convention (E) /= Convention_Stubbed then if Result = No_List then Result := Empty_List; end if; Generate_Subprogram_Descriptor_For_Imported_Subprogram (E, Result); end if; end if; return Result; end Freeze_Entity; ----------------------------- -- Freeze_Enumeration_Type -- ----------------------------- procedure Freeze_Enumeration_Type (Typ : Entity_Id) is begin if Has_Foreign_Convention (Typ) and then not Has_Size_Clause (Typ) and then Esize (Typ) < Standard_Integer_Size then Init_Esize (Typ, Standard_Integer_Size); else Adjust_Esize_For_Alignment (Typ); end if; end Freeze_Enumeration_Type; ----------------------- -- Freeze_Expression -- ----------------------- procedure Freeze_Expression (N : Node_Id) is In_Def_Exp : constant Boolean := In_Default_Expression; Typ : Entity_Id; Nam : Entity_Id; Desig_Typ : Entity_Id; P : Node_Id; Parent_P : Node_Id; Freeze_Outside : Boolean := False; -- This flag is set true if the entity must be frozen outside the -- current subprogram. This happens in the case of expander generated -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do -- not freeze all entities like other bodies, but which nevertheless -- may reference entities that have to be frozen before the body and -- obviously cannot be frozen inside the body. function In_Exp_Body (N : Node_Id) return Boolean; -- Given an N_Handled_Sequence_Of_Statements node N, determines whether -- it is the handled statement sequence of an expander generated -- subprogram (init proc, or stream subprogram). If so, it returns -- True, otherwise False. function In_Exp_Body (N : Node_Id) return Boolean is P : Node_Id; begin if Nkind (N) = N_Subprogram_Body then P := N; else P := Parent (N); end if; if Nkind (P) /= N_Subprogram_Body then return False; else P := Defining_Unit_Name (Specification (P)); if Nkind (P) = N_Defining_Identifier and then (Chars (P) = Name_uInit_Proc or else Chars (P) = Name_uInput or else Chars (P) = Name_uOutput or else Chars (P) = Name_uRead or else Chars (P) = Name_uWrite) then return True; else return False; end if; end if; end In_Exp_Body; -- Start of processing for Freeze_Expression begin -- Immediate return if freezing is inhibited. This flag is set by -- the analyzer to stop freezing on generated expressions that would -- cause freezing if they were in the source program, but which are -- not supposed to freeze, since they are created. if Must_Not_Freeze (N) then return; end if; -- If expression is non-static, then it does not freeze in a default -- expression, see section "Handling of Default Expressions" in the -- spec of package Sem for further details. Note that we have to -- make sure that we actually have a real expression (if we have -- a subtype indication, we can't test Is_Static_Expression!) if In_Def_Exp and then Nkind (N) in N_Subexpr and then not Is_Static_Expression (N) then return; end if; -- Freeze type of expression if not frozen already if Nkind (N) in N_Has_Etype and then not Is_Frozen (Etype (N)) then Typ := Etype (N); else Typ := Empty; end if; -- For entity name, freeze entity if not frozen already. A special -- exception occurs for an identifier that did not come from source. -- We don't let such identifiers freeze a non-internal entity, i.e. -- an entity that did come from source, since such an identifier was -- generated by the expander, and cannot have any semantic effect on -- the freezing semantics. For example, this stops the parameter of -- an initialization procedure from freezing the variable. if Is_Entity_Name (N) and then not Is_Frozen (Entity (N)) and then (Nkind (N) /= N_Identifier or else Comes_From_Source (N) or else not Comes_From_Source (Entity (N))) then Nam := Entity (N); else Nam := Empty; end if; -- For an allocator freeze designated type if not frozen already. -- For an aggregate whose component type is an access type, freeze -- the designated type now, so that its freeze does not appear within -- the loop that might be created in the expansion of the aggregate. -- If the designated type is a private type without full view, the -- expression cannot contain an allocator, so the type is not frozen. Desig_Typ := Empty; case Nkind (N) is when N_Allocator => Desig_Typ := Designated_Type (Etype (N)); when N_Aggregate => if Is_Array_Type (Etype (N)) and then Is_Access_Type (Component_Type (Etype (N))) then Desig_Typ := Designated_Type (Component_Type (Etype (N))); end if; when N_Selected_Component | N_Indexed_Component | N_Slice => if Is_Access_Type (Etype (Prefix (N))) then Desig_Typ := Designated_Type (Etype (Prefix (N))); end if; when others => null; end case; if Desig_Typ /= Empty and then (Is_Frozen (Desig_Typ) or else (not Is_Fully_Defined (Desig_Typ))) then Desig_Typ := Empty; end if; -- All done if nothing needs freezing if No (Typ) and then No (Nam) and then No (Desig_Typ) then return; end if; -- Loop for looking at the right place to insert the freeze nodes -- exiting from the loop when it is appropriate to insert the freeze -- node before the current node P. -- Also checks some special exceptions to the freezing rules. These -- cases result in a direct return, bypassing the freeze action. P := N; loop Parent_P := Parent (P); -- If we don't have a parent, then we are not in a well-formed -- tree. This is an unusual case, but there are some legitimate -- situations in which this occurs, notably when the expressions -- in the range of a type declaration are resolved. We simply -- ignore the freeze request in this case. Is this right ??? if No (Parent_P) then return; end if; -- See if we have got to an appropriate point in the tree case Nkind (Parent_P) is -- A special test for the exception of (RM 13.14(8)) for the -- case of per-object expressions (RM 3.8(18)) occurring in a -- component definition or a discrete subtype definition. Note -- that we test for a component declaration which includes both -- cases we are interested in, and furthermore the tree does not -- have explicit nodes for either of these two constructs. when N_Component_Declaration => -- The case we want to test for here is an identifier that is -- a per-object expression, this is either a discriminant that -- appears in a context other than the component declaration -- or it is a reference to the type of the enclosing construct. -- For either of these cases, we skip the freezing if not In_Default_Expression and then Nkind (N) = N_Identifier and then (Present (Entity (N))) then -- We recognize the discriminant case by just looking for -- a reference to a discriminant. It can only be one for -- the enclosing construct. Skip freezing in this case. if Ekind (Entity (N)) = E_Discriminant then return; -- For the case of a reference to the enclosing record, -- (or task or protected type), we look for a type that -- matches the current scope. elsif Entity (N) = Current_Scope then return; end if; end if; -- If we have an enumeration literal that appears as the -- choice in the aggregate of an enumeration representation -- clause, then freezing does not occur (RM 13.14(9)). when N_Enumeration_Representation_Clause => -- The case we are looking for is an enumeration literal if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal) and then Is_Enumeration_Type (Etype (N)) then -- If enumeration literal appears directly as the choice, -- do not freeze (this is the normal non-overloade case) if Nkind (Parent (N)) = N_Component_Association and then First (Choices (Parent (N))) = N then return; -- If enumeration literal appears as the name of a -- function which is the choice, then also do not freeze. -- This happens in the overloaded literal case, where the -- enumeration literal is temporarily changed to a function -- call for overloading analysis purposes. elsif Nkind (Parent (N)) = N_Function_Call and then Nkind (Parent (Parent (N))) = N_Component_Association and then First (Choices (Parent (Parent (N)))) = Parent (N) then return; end if; end if; -- Normally if the parent is a handled sequence of statements, -- then the current node must be a statement, and that is an -- appropriate place to insert a freeze node. when N_Handled_Sequence_Of_Statements => -- An exception occurs when the sequence of statements is -- for an expander generated body that did not do the usual -- freeze all operation. In this case we usually want to -- freeze outside this body, not inside it, and we skip -- past the subprogram body that we are inside. if In_Exp_Body (Parent_P) then -- However, we *do* want to freeze at this point if we have -- an entity to freeze, and that entity is declared *inside* -- the body of the expander generated procedure. This case -- is recognized by the scope of the type, which is either -- the spec for some enclosing body, or (in the case of -- init_procs, for which there are no separate specs) the -- current scope. declare Subp : constant Node_Id := Parent (Parent_P); Cspc : Entity_Id; begin if Nkind (Subp) = N_Subprogram_Body then Cspc := Corresponding_Spec (Subp); if (Present (Typ) and then Scope (Typ) = Cspc) or else (Present (Nam) and then Scope (Nam) = Cspc) then exit; elsif Present (Typ) and then Scope (Typ) = Current_Scope and then Current_Scope = Defining_Entity (Subp) then exit; end if; end if; end; -- If not that exception to the exception, then this is -- where we delay the freeze till outside the body. Parent_P := Parent (Parent_P); Freeze_Outside := True; -- Here if normal case where we are in handled statement -- sequence and want to do the insertion right there. else exit; end if; -- If parent is a body or a spec or a block, then the current -- node is a statement or declaration and we can insert the -- freeze node before it. when N_Package_Specification | N_Package_Body | N_Subprogram_Body | N_Task_Body | N_Protected_Body | N_Entry_Body | N_Block_Statement => exit; -- The expander is allowed to define types in any statements list, -- so any of the following parent nodes also mark a freezing point -- if the actual node is in a list of statements or declarations. when N_Exception_Handler | N_If_Statement | N_Elsif_Part | N_Case_Statement_Alternative | N_Compilation_Unit_Aux | N_Selective_Accept | N_Accept_Alternative | N_Delay_Alternative | N_Conditional_Entry_Call | N_Entry_Call_Alternative | N_Triggering_Alternative | N_Abortable_Part | N_Freeze_Entity => exit when Is_List_Member (P); -- Note: The N_Loop_Statement is a special case. A type that -- appears in the source can never be frozen in a loop (this -- occurs only because of a loop expanded by the expander), -- so we keep on going. Otherwise we terminate the search. -- Same is true of any entity which comes from source. (if they -- have a predefined type, that type does not appear to come -- from source, but the entity should not be frozen here). when N_Loop_Statement => exit when not Comes_From_Source (Etype (N)) and then (No (Nam) or else not Comes_From_Source (Nam)); -- For all other cases, keep looking at parents when others => null; end case; -- We fall through the case if we did not yet find the proper -- place in the free for inserting the freeze node, so climb! P := Parent_P; end loop; -- If the expression appears in a record or an initialization -- procedure, the freeze nodes are collected and attached to -- the current scope, to be inserted and analyzed on exit from -- the scope, to insure that generated entities appear in the -- correct scope. If the expression is a default for a discriminant -- specification, the scope is still void. The expression can also -- appear in the discriminant part of a private or concurrent type. -- The other case requiring this special handling is if we are in -- a default expression, since in that case we are about to freeze -- a static type, and the freeze scope needs to be the outer scope, -- not the scope of the subprogram with the default parameter. -- For default expressions in generic units, the Move_Freeze_Nodes -- mechanism (see sem_ch12.adb) takes care of placing them at the -- proper place, after the generic unit. if (In_Def_Exp and not Inside_A_Generic) or else Freeze_Outside or else (Is_Type (Current_Scope) and then (not Is_Concurrent_Type (Current_Scope) or else not Has_Completion (Current_Scope))) or else Ekind (Current_Scope) = E_Void then declare Loc : constant Source_Ptr := Sloc (Current_Scope); Freeze_Nodes : List_Id := No_List; begin if Present (Desig_Typ) then Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes); end if; if Present (Typ) then Freeze_And_Append (Typ, Loc, Freeze_Nodes); end if; if Present (Nam) then Freeze_And_Append (Nam, Loc, Freeze_Nodes); end if; if Is_Non_Empty_List (Freeze_Nodes) then if No (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions) then Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions := Freeze_Nodes; else Append_List (Freeze_Nodes, Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions); end if; end if; end; return; end if; -- Now we have the right place to do the freezing. First, a special -- adjustment, if we are in default expression analysis mode, these -- freeze actions must not be thrown away (normally all inserted -- actions are thrown away in this mode. However, the freeze actions -- are from static expressions and one of the important reasons we -- are doing this special analysis is to get these freeze actions. -- Therefore we turn off the In_Default_Expression mode to propagate -- these freeze actions. This also means they get properly analyzed -- and expanded. In_Default_Expression := False; -- Freeze the designated type of an allocator (RM 13.14(12)) if Present (Desig_Typ) then Freeze_Before (P, Desig_Typ); end if; -- Freeze type of expression (RM 13.14(9)). Note that we took care of -- the enumeration representation clause exception in the loop above. if Present (Typ) then Freeze_Before (P, Typ); end if; -- Freeze name if one is present (RM 13.14(10)) if Present (Nam) then Freeze_Before (P, Nam); end if; In_Default_Expression := In_Def_Exp; end Freeze_Expression; ----------------------------- -- Freeze_Fixed_Point_Type -- ----------------------------- -- Certain fixed-point types and subtypes, including implicit base -- types and declared first subtypes, have not yet set up a range. -- This is because the range cannot be set until the Small and Size -- values are known, and these are not known till the type is frozen. -- To signal this case, Scalar_Range contains an unanalyzed syntactic -- range whose bounds are unanalyzed real literals. This routine will -- recognize this case, and transform this range node into a properly -- typed range with properly analyzed and resolved values. procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is Rng : constant Node_Id := Scalar_Range (Typ); Lo : constant Node_Id := Low_Bound (Rng); Hi : constant Node_Id := High_Bound (Rng); Btyp : constant Entity_Id := Base_Type (Typ); Brng : constant Node_Id := Scalar_Range (Btyp); BLo : constant Node_Id := Low_Bound (Brng); BHi : constant Node_Id := High_Bound (Brng); Small : constant Ureal := Small_Value (Typ); Loval : Ureal; Hival : Ureal; Atype : Entity_Id; Actual_Size : Nat; function Fsize (Lov, Hiv : Ureal) return Nat; -- Returns size of type with given bounds. Also leaves these -- bounds set as the current bounds of the Typ. function Fsize (Lov, Hiv : Ureal) return Nat is begin Set_Realval (Lo, Lov); Set_Realval (Hi, Hiv); return Minimum_Size (Typ); end Fsize; -- Start of processing for Freeze_Fixed_Point_Type; begin -- If Esize of a subtype has not previously been set, set it now if Unknown_Esize (Typ) then Atype := Ancestor_Subtype (Typ); if Present (Atype) then Set_Size_Info (Typ, Atype); else Set_Size_Info (Typ, Base_Type (Typ)); end if; end if; -- Immediate return if the range is already analyzed. This means -- that the range is already set, and does not need to be computed -- by this routine. if Analyzed (Rng) then return; end if; -- Immediate return if either of the bounds raises Constraint_Error if Raises_Constraint_Error (Lo) or else Raises_Constraint_Error (Hi) then return; end if; Loval := Realval (Lo); Hival := Realval (Hi); -- Ordinary fixed-point case if Is_Ordinary_Fixed_Point_Type (Typ) then -- For the ordinary fixed-point case, we are allowed to fudge the -- end-points up or down by small. Generally we prefer to fudge -- up, i.e. widen the bounds for non-model numbers so that the -- end points are included. However there are cases in which this -- cannot be done, and indeed cases in which we may need to narrow -- the bounds. The following circuit makes the decision. -- Note: our terminology here is that Incl_EP means that the -- bounds are widened by Small if necessary to include the end -- points, and Excl_EP means that the bounds are narrowed by -- Small to exclude the end-points if this reduces the size. -- Note that in the Incl case, all we care about is including the -- end-points. In the Excl case, we want to narrow the bounds as -- much as permitted by the RM, to give the smallest possible size. Fudge : declare Loval_Incl_EP : Ureal; Hival_Incl_EP : Ureal; Loval_Excl_EP : Ureal; Hival_Excl_EP : Ureal; Size_Incl_EP : Nat; Size_Excl_EP : Nat; Model_Num : Ureal; First_Subt : Entity_Id; Actual_Lo : Ureal; Actual_Hi : Ureal; begin -- First step. Base types are required to be symmetrical. Right -- now, the base type range is a copy of the first subtype range. -- This will be corrected before we are done, but right away we -- need to deal with the case where both bounds are non-negative. -- In this case, we set the low bound to the negative of the high -- bound, to make sure that the size is computed to include the -- required sign. Note that we do not need to worry about the -- case of both bounds negative, because the sign will be dealt -- with anyway. Furthermore we can't just go making such a bound -- symmetrical, since in a twos-complement system, there is an -- extra negative value which could not be accomodated on the -- positive side. if Typ = Btyp and then not UR_Is_Negative (Loval) and then Hival > Loval then Loval := -Hival; Set_Realval (Lo, Loval); end if; -- Compute the fudged bounds. If the number is a model number, -- then we do nothing to include it, but we are allowed to -- backoff to the next adjacent model number when we exclude -- it. If it is not a model number then we straddle the two -- values with the model numbers on either side. Model_Num := UR_Trunc (Loval / Small) * Small; if Loval = Model_Num then Loval_Incl_EP := Model_Num; else Loval_Incl_EP := Model_Num - Small; end if; -- The low value excluding the end point is Small greater, but -- we do not do this exclusion if the low value is positive, -- since it can't help the size and could actually hurt by -- crossing the high bound. if UR_Is_Negative (Loval_Incl_EP) then Loval_Excl_EP := Loval_Incl_EP + Small; else Loval_Excl_EP := Loval_Incl_EP; end if; -- Similar processing for upper bound and high value Model_Num := UR_Trunc (Hival / Small) * Small; if Hival = Model_Num then Hival_Incl_EP := Model_Num; else Hival_Incl_EP := Model_Num + Small; end if; if UR_Is_Positive (Hival_Incl_EP) then Hival_Excl_EP := Hival_Incl_EP - Small; else Hival_Excl_EP := Hival_Incl_EP; end if; -- One further adjustment is needed. In the case of subtypes, -- we cannot go outside the range of the base type, or we get -- peculiarities, and the base type range is already set. This -- only applies to the Incl values, since clearly the Excl -- values are already as restricted as they are allowed to be. if Typ /= Btyp then Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo)); Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi)); end if; -- Get size including and excluding end points Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP); Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP); -- No need to exclude end-points if it does not reduce size if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then Loval_Excl_EP := Loval_Incl_EP; end if; if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then Hival_Excl_EP := Hival_Incl_EP; end if; -- Now we set the actual size to be used. We want to use the -- bounds fudged up to include the end-points but only if this -- can be done without violating a specifically given size -- size clause or causing an unacceptable increase in size. -- Case of size clause given if Has_Size_Clause (Typ) then -- Use the inclusive size only if it is consistent with -- the explicitly specified size. if Size_Incl_EP <= RM_Size (Typ) then Actual_Lo := Loval_Incl_EP; Actual_Hi := Hival_Incl_EP; Actual_Size := Size_Incl_EP; -- If the inclusive size is too large, we try excluding -- the end-points (will be caught later if does not work). else Actual_Lo := Loval_Excl_EP; Actual_Hi := Hival_Excl_EP; Actual_Size := Size_Excl_EP; end if; -- Case of size clause not given else -- If we have a base type whose corresponding first subtype -- has an explicit size that is large enough to include our -- end-points, then do so. There is no point in working hard -- to get a base type whose size is smaller than the specified -- size of the first subtype. First_Subt := First_Subtype (Typ); if Has_Size_Clause (First_Subt) and then Size_Incl_EP <= Esize (First_Subt) then Actual_Size := Size_Incl_EP; Actual_Lo := Loval_Incl_EP; Actual_Hi := Hival_Incl_EP; -- If excluding the end-points makes the size smaller and -- results in a size of 8,16,32,64, then we take the smaller -- size. For the 64 case, this is compulsory. For the other -- cases, it seems reasonable. We like to include end points -- if we can, but not at the expense of moving to the next -- natural boundary of size. elsif Size_Incl_EP /= Size_Excl_EP and then (Size_Excl_EP = 8 or else Size_Excl_EP = 16 or else Size_Excl_EP = 32 or else Size_Excl_EP = 64) then Actual_Size := Size_Excl_EP; Actual_Lo := Loval_Excl_EP; Actual_Hi := Hival_Excl_EP; -- Otherwise we can definitely include the end points else Actual_Size := Size_Incl_EP; Actual_Lo := Loval_Incl_EP; Actual_Hi := Hival_Incl_EP; end if; -- One pathological case: normally we never fudge a low -- bound down, since it would seem to increase the size -- (if it has any effect), but for ranges containing a -- single value, or no values, the high bound can be -- small too large. Consider: -- type t is delta 2.0**(-14) -- range 131072.0 .. 0; -- That lower bound is *just* outside the range of 32 -- bits, and does need fudging down in this case. Note -- that the bounds will always have crossed here, since -- the high bound will be fudged down if necessary, as -- in the case of: -- type t is delta 2.0**(-14) -- range 131072.0 .. 131072.0; -- So we can detect the situation by looking for crossed -- bounds, and if the bounds are crossed, and the low -- bound is greater than zero, we will always back it -- off by small, since this is completely harmless. if Actual_Lo > Actual_Hi then if UR_Is_Positive (Actual_Lo) then Actual_Lo := Loval_Incl_EP - Small; Actual_Size := Fsize (Actual_Lo, Actual_Hi); -- And of course, we need to do exactly the same parallel -- fudge for flat ranges in the negative region. elsif UR_Is_Negative (Actual_Hi) then Actual_Hi := Hival_Incl_EP + Small; Actual_Size := Fsize (Actual_Lo, Actual_Hi); end if; end if; end if; Set_Realval (Lo, Actual_Lo); Set_Realval (Hi, Actual_Hi); end Fudge; -- For the decimal case, none of this fudging is required, since there -- are no end-point problems in the decimal case (the end-points are -- always included). else Actual_Size := Fsize (Loval, Hival); end if; -- At this stage, the actual size has been calculated and the proper -- required bounds are stored in the low and high bounds. if Actual_Size > 64 then Error_Msg_Uint_1 := UI_From_Int (Actual_Size); Error_Msg_N ("size required (^) for type& too large, maximum is 64", Typ); Actual_Size := 64; end if; -- Check size against explicit given size if Has_Size_Clause (Typ) then if Actual_Size > RM_Size (Typ) then Error_Msg_Uint_1 := RM_Size (Typ); Error_Msg_Uint_2 := UI_From_Int (Actual_Size); Error_Msg_NE ("size given (^) for type& too small, minimum is ^", Size_Clause (Typ), Typ); else Actual_Size := UI_To_Int (Esize (Typ)); end if; -- Increase size to next natural boundary if no size clause given else if Actual_Size <= 8 then Actual_Size := 8; elsif Actual_Size <= 16 then Actual_Size := 16; elsif Actual_Size <= 32 then Actual_Size := 32; else Actual_Size := 64; end if; Init_Esize (Typ, Actual_Size); Adjust_Esize_For_Alignment (Typ); end if; -- If we have a base type, then expand the bounds so that they -- extend to the full width of the allocated size in bits, to -- avoid junk range checks on intermediate computations. if Base_Type (Typ) = Typ then Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1)))); Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1))); end if; -- Final step is to reanalyze the bounds using the proper type -- and set the Corresponding_Integer_Value fields of the literals. Set_Etype (Lo, Empty); Set_Analyzed (Lo, False); Analyze (Lo); -- Resolve with universal fixed if the base type, and the base -- type if it is a subtype. Note we can't resolve the base type -- with itself, that would be a reference before definition. if Typ = Btyp then Resolve (Lo, Universal_Fixed); else Resolve (Lo, Btyp); end if; -- Set corresponding integer value for bound Set_Corresponding_Integer_Value (Lo, UR_To_Uint (Realval (Lo) / Small)); -- Similar processing for high bound Set_Etype (Hi, Empty); Set_Analyzed (Hi, False); Analyze (Hi); if Typ = Btyp then Resolve (Hi, Universal_Fixed); else Resolve (Hi, Btyp); end if; Set_Corresponding_Integer_Value (Hi, UR_To_Uint (Realval (Hi) / Small)); -- Set type of range to correspond to bounds Set_Etype (Rng, Etype (Lo)); -- Set Esize to calculated size and also set RM_Size Init_Esize (Typ, Actual_Size); -- Set RM_Size if not already set. If already set, check value declare Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ)); begin if RM_Size (Typ) /= Uint_0 then if RM_Size (Typ) < Minsiz then Error_Msg_Uint_1 := RM_Size (Typ); Error_Msg_Uint_2 := Minsiz; Error_Msg_NE ("size given (^) for type& too small, minimum is ^", Size_Clause (Typ), Typ); end if; else Set_RM_Size (Typ, Minsiz); end if; end; end Freeze_Fixed_Point_Type; ------------------ -- Freeze_Itype -- ------------------ procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is L : List_Id; begin Set_Has_Delayed_Freeze (T); L := Freeze_Entity (T, Sloc (N)); if Is_Non_Empty_List (L) then Insert_Actions (N, L); end if; end Freeze_Itype; -------------------------- -- Freeze_Static_Object -- -------------------------- procedure Freeze_Static_Object (E : Entity_Id) is Cannot_Be_Static : exception; -- Exception raised if the type of a static object cannot be made -- static. This happens if the type depends on non-global objects. procedure Ensure_Expression_Is_SA (N : Node_Id); -- Called to ensure that an expression used as part of a type -- definition is statically allocatable, which means that the type -- of the expression is statically allocatable, and the expression -- is either static, or a reference to a library level constant. procedure Ensure_Type_Is_SA (Typ : Entity_Id); -- Called to mark a type as static, checking that it is possible -- to set the type as static. If it is not possible, then the -- exception Cannot_Be_Static is raised. ----------------------------- -- Ensure_Expression_Is_SA -- ----------------------------- procedure Ensure_Expression_Is_SA (N : Node_Id) is Ent : Entity_Id; begin Ensure_Type_Is_SA (Etype (N)); if Is_Static_Expression (N) then return; elsif Nkind (N) = N_Identifier then Ent := Entity (N); if Present (Ent) and then Ekind (Ent) = E_Constant and then Is_Library_Level_Entity (Ent) then return; end if; end if; raise Cannot_Be_Static; end Ensure_Expression_Is_SA; ----------------------- -- Ensure_Type_Is_SA -- ----------------------- procedure Ensure_Type_Is_SA (Typ : Entity_Id) is N : Node_Id; C : Entity_Id; begin -- If type is library level, we are all set if Is_Library_Level_Entity (Typ) then return; end if; -- We are also OK if the type is already marked as statically -- allocated, which means we processed it before. if Is_Statically_Allocated (Typ) then return; end if; -- Mark type as statically allocated Set_Is_Statically_Allocated (Typ); -- Check that it is safe to statically allocate this type if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then Ensure_Expression_Is_SA (Type_Low_Bound (Typ)); Ensure_Expression_Is_SA (Type_High_Bound (Typ)); elsif Is_Array_Type (Typ) then N := First_Index (Typ); while Present (N) loop Ensure_Type_Is_SA (Etype (N)); Next_Index (N); end loop; Ensure_Type_Is_SA (Component_Type (Typ)); elsif Is_Access_Type (Typ) then if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then declare F : Entity_Id; T : constant Entity_Id := Etype (Designated_Type (Typ)); begin if T /= Standard_Void_Type then Ensure_Type_Is_SA (T); end if; F := First_Formal (Designated_Type (Typ)); while Present (F) loop Ensure_Type_Is_SA (Etype (F)); Next_Formal (F); end loop; end; else Ensure_Type_Is_SA (Designated_Type (Typ)); end if; elsif Is_Record_Type (Typ) then C := First_Entity (Typ); while Present (C) loop if Ekind (C) = E_Discriminant or else Ekind (C) = E_Component then Ensure_Type_Is_SA (Etype (C)); elsif Is_Type (C) then Ensure_Type_Is_SA (C); end if; Next_Entity (C); end loop; elsif Ekind (Typ) = E_Subprogram_Type then Ensure_Type_Is_SA (Etype (Typ)); C := First_Formal (Typ); while Present (C) loop Ensure_Type_Is_SA (Etype (C)); Next_Formal (C); end loop; else raise Cannot_Be_Static; end if; end Ensure_Type_Is_SA; -- Start of processing for Freeze_Static_Object begin Ensure_Type_Is_SA (Etype (E)); exception when Cannot_Be_Static => -- If the object that cannot be static is imported or exported, -- then we give an error message saying that this object cannot -- be imported or exported. if Is_Imported (E) then Error_Msg_N ("& cannot be imported (local type is not constant)", E); -- Otherwise must be exported, something is wrong if compiler -- is marking something as statically allocated which cannot be). else pragma Assert (Is_Exported (E)); Error_Msg_N ("& cannot be exported (local type is not constant)", E); end if; end Freeze_Static_Object; ----------------------- -- Freeze_Subprogram -- ----------------------- procedure Freeze_Subprogram (E : Entity_Id) is Retype : Entity_Id; F : Entity_Id; begin -- Subprogram may not have an address clause unless it is imported if Present (Address_Clause (E)) then if not Is_Imported (E) then Error_Msg_N ("address clause can only be given " & "for imported subprogram", Name (Address_Clause (E))); end if; end if; -- For non-foreign convention subprograms, this is where we create -- the extra formals (for accessibility level and constrained bit -- information). We delay this till the freeze point precisely so -- that we know the convention! if not Has_Foreign_Convention (E) then Create_Extra_Formals (E); Set_Mechanisms (E); -- If this is convention Ada and a Valued_Procedure, that's odd if Ekind (E) = E_Procedure and then Is_Valued_Procedure (E) and then Convention (E) = Convention_Ada then Error_Msg_N ("?Valued_Procedure has no effect for convention Ada", E); Set_Is_Valued_Procedure (E, False); end if; -- Case of foreign convention else Set_Mechanisms (E); -- For foreign conventions, do not permit return of an -- unconstrained array. -- Note: we *do* allow a return by descriptor for the VMS case, -- though here there is probably more to be done ??? if Ekind (E) = E_Function then Retype := Underlying_Type (Etype (E)); -- If no return type, probably some other error, e.g. a -- missing full declaration, so ignore. if No (Retype) then null; -- If the return type is generic, we have emitted a warning -- earlier on, and there is nothing else to check here. -- Specific instantiations may lead to erroneous behavior. elsif Is_Generic_Type (Etype (E)) then null; elsif Is_Array_Type (Retype) and then not Is_Constrained (Retype) and then Mechanism (E) not in Descriptor_Codes then Error_Msg_NE ("convention for& does not permit returning " & "unconstrained array type", E, E); return; end if; end if; -- If any of the formals for an exported foreign convention -- subprogram have defaults, then emit an appropriate warning -- since this is odd (default cannot be used from non-Ada code) if Is_Exported (E) then F := First_Formal (E); while Present (F) loop if Present (Default_Value (F)) then Error_Msg_N ("?parameter cannot be defaulted in non-Ada call", Default_Value (F)); end if; Next_Formal (F); end loop; end if; end if; -- For VMS, descriptor mechanisms for parameters are allowed only -- for imported subprograms. if OpenVMS_On_Target then if not Is_Imported (E) then F := First_Formal (E); while Present (F) loop if Mechanism (F) in Descriptor_Codes then Error_Msg_N ("descriptor mechanism for parameter not permitted", F); Error_Msg_N ("\can only be used for imported subprogram", F); end if; Next_Formal (F); end loop; end if; end if; end Freeze_Subprogram; ----------------------- -- Is_Fully_Defined -- ----------------------- -- Should this be in Sem_Util ??? function Is_Fully_Defined (T : Entity_Id) return Boolean is begin if Ekind (T) = E_Class_Wide_Type then return Is_Fully_Defined (Etype (T)); else return not Is_Private_Type (T) or else Present (Full_View (Base_Type (T))); end if; end Is_Fully_Defined; --------------------------------- -- Process_Default_Expressions -- --------------------------------- procedure Process_Default_Expressions (E : Entity_Id; After : in out Node_Id) is Loc : constant Source_Ptr := Sloc (E); Dbody : Node_Id; Formal : Node_Id; Dcopy : Node_Id; Dnam : Entity_Id; begin Set_Default_Expressions_Processed (E); -- A subprogram instance and its associated anonymous subprogram -- share their signature. The default expression functions are defined -- in the wrapper packages for the anonymous subprogram, and should -- not be generated again for the instance. if Is_Generic_Instance (E) and then Present (Alias (E)) and then Default_Expressions_Processed (Alias (E)) then return; end if; Formal := First_Formal (E); while Present (Formal) loop if Present (Default_Value (Formal)) then -- We work with a copy of the default expression because we -- do not want to disturb the original, since this would mess -- up the conformance checking. Dcopy := New_Copy_Tree (Default_Value (Formal)); -- The analysis of the expression may generate insert actions, -- which of course must not be executed. We wrap those actions -- in a procedure that is not called, and later on eliminated. -- The following cases have no side-effects, and are analyzed -- directly. if Nkind (Dcopy) = N_Identifier or else Nkind (Dcopy) = N_Expanded_Name or else Nkind (Dcopy) = N_Integer_Literal or else (Nkind (Dcopy) = N_Real_Literal and then not Vax_Float (Etype (Dcopy))) or else Nkind (Dcopy) = N_Character_Literal or else Nkind (Dcopy) = N_String_Literal or else Nkind (Dcopy) = N_Null or else (Nkind (Dcopy) = N_Attribute_Reference and then Attribute_Name (Dcopy) = Name_Null_Parameter) then -- If there is no default function, we must still do a full -- analyze call on the default value, to ensure that all -- error checks are performed, e.g. those associated with -- static evaluation. Note that this branch will always be -- taken if the analyzer is turned off (but we still need the -- error checks). -- Note: the setting of parent here is to meet the requirement -- that we can only analyze the expression while attached to -- the tree. Really the requirement is that the parent chain -- be set, we don't actually need to be in the tree. Set_Parent (Dcopy, Declaration_Node (Formal)); Analyze (Dcopy); -- Default expressions are resolved with their own type if the -- context is generic, to avoid anomalies with private types. if Ekind (Scope (E)) = E_Generic_Package then Resolve (Dcopy, Etype (Dcopy)); else Resolve (Dcopy, Etype (Formal)); end if; -- If that resolved expression will raise constraint error, -- then flag the default value as raising constraint error. -- This allows a proper error message on the calls. if Raises_Constraint_Error (Dcopy) then Set_Raises_Constraint_Error (Default_Value (Formal)); end if; -- If the default is a parameterless call, we use the name of -- the called function directly, and there is no body to build. elsif Nkind (Dcopy) = N_Function_Call and then No (Parameter_Associations (Dcopy)) then null; -- Else construct and analyze the body of a wrapper procedure -- that contains an object declaration to hold the expression. -- Given that this is done only to complete the analysis, it -- simpler to build a procedure than a function which might -- involve secondary stack expansion. else Dnam := Make_Defining_Identifier (Loc, New_Internal_Name ('D')); Dbody := Make_Subprogram_Body (Loc, Specification => Make_Procedure_Specification (Loc, Defining_Unit_Name => Dnam), Declarations => New_List ( Make_Object_Declaration (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, New_Internal_Name ('T')), Object_Definition => New_Occurrence_Of (Etype (Formal), Loc), Expression => New_Copy_Tree (Dcopy))), Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List)); Set_Scope (Dnam, Scope (E)); Set_Assignment_OK (First (Declarations (Dbody))); Set_Is_Eliminated (Dnam); Insert_After (After, Dbody); Analyze (Dbody); After := Dbody; end if; end if; Next_Formal (Formal); end loop; end Process_Default_Expressions; ---------------------------------------- -- Set_Component_Alignment_If_Not_Set -- ---------------------------------------- procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is begin -- Ignore if not base type, subtypes don't need anything if Typ /= Base_Type (Typ) then return; end if; -- Do not override existing representation if Is_Packed (Typ) then return; elsif Has_Specified_Layout (Typ) then return; elsif Component_Alignment (Typ) /= Calign_Default then return; else Set_Component_Alignment (Typ, Scope_Stack.Table (Scope_Stack.Last).Component_Alignment_Default); end if; end Set_Component_Alignment_If_Not_Set; --------------------------- -- Set_Debug_Info_Needed -- --------------------------- procedure Set_Debug_Info_Needed (T : Entity_Id) is begin if No (T) or else Needs_Debug_Info (T) or else Debug_Info_Off (T) then return; else Set_Needs_Debug_Info (T); end if; if Is_Object (T) then Set_Debug_Info_Needed (Etype (T)); elsif Is_Type (T) then Set_Debug_Info_Needed (Etype (T)); if Is_Record_Type (T) then declare Ent : Entity_Id := First_Entity (T); begin while Present (Ent) loop Set_Debug_Info_Needed (Ent); Next_Entity (Ent); end loop; end; elsif Is_Array_Type (T) then Set_Debug_Info_Needed (Component_Type (T)); declare Indx : Node_Id := First_Index (T); begin while Present (Indx) loop Set_Debug_Info_Needed (Etype (Indx)); Indx := Next_Index (Indx); end loop; end; if Is_Packed (T) then Set_Debug_Info_Needed (Packed_Array_Type (T)); end if; elsif Is_Access_Type (T) then Set_Debug_Info_Needed (Directly_Designated_Type (T)); elsif Is_Private_Type (T) then Set_Debug_Info_Needed (Full_View (T)); elsif Is_Protected_Type (T) then Set_Debug_Info_Needed (Corresponding_Record_Type (T)); end if; end if; end Set_Debug_Info_Needed; end Freeze;