eap.conf   [plain text]


# -*- text -*-
#
#  Whatever you do, do NOT set 'Auth-Type := EAP'.  The server
#  is smart enough to figure this out on its own.  The most
#  common side effect of setting 'Auth-Type := EAP' is that the
#  users then cannot use ANY other authentication method.
#
#	$Id: eap.conf,v 1.2 2005/10/28 23:31:36 snsimon Exp $
#
	eap {
		#  Invoke the default supported EAP type when
		#  EAP-Identity response is received.
		#
		#  The incoming EAP messages DO NOT specify which EAP
		#  type they will be using, so it MUST be set here.
		#
		#  For now, only one default EAP type may be used at a time.
		#
		#  If the EAP-Type attribute is set by another module,
		#  then that EAP type takes precedence over the
		#  default type configured here.
		#
		default_eap_type = ttls

		#  A list is maintained to correlate EAP-Response
		#  packets with EAP-Request packets.  After a
		#  configurable length of time, entries in the list
		#  expire, and are deleted.
		#
		timer_expire     = 60

		#  There are many EAP types, but the server has support
		#  for only a limited subset.  If the server receives
		#  a request for an EAP type it does not support, then
		#  it normally rejects the request.  By setting this
		#  configuration to "yes", you can tell the server to
		#  instead keep processing the request.  Another module
		#  MUST then be configured to proxy the request to
		#  another RADIUS server which supports that EAP type.
		#
		#  If another module is NOT configured to handle the
		#  request, then the request will still end up being
		#  rejected.
		ignore_unknown_eap_types = no

		# Cisco AP1230B firmware 12.2(13)JA1 has a bug.  When given
		# a User-Name attribute in an Access-Accept, it copies one
		# more byte than it should.
		#
		# We can work around it by configurably adding an extra
		# zero byte.
		cisco_accounting_username_bug = no

		# Supported EAP-types

		#
		#  We do NOT recommend using EAP-MD5 authentication
		#  for wireless connections.  It is insecure, and does
		#  not provide for dynamic WEP keys.
		#
		#md5 {
		#}

		# Cisco LEAP
		#
		#  We do not recommend using LEAP in new deployments.  See:
		#  http://www.securiteam.com/tools/5TP012ACKE.html
		#
		#  Cisco LEAP uses the MS-CHAP algorithm (but not
		#  the MS-CHAP attributes) to perform it's authentication.
		#
		#  As a result, LEAP *requires* access to the plain-text
		#  User-Password, or the NT-Password attributes.
		#  'System' authentication is impossible with LEAP.
		#
		leap {
		}

		#  Generic Token Card.
		#
		#  Currently, this is only permitted inside of EAP-TTLS,
		#  or EAP-PEAP.  The module "challenges" the user with
		#  text, and the response from the user is taken to be
		#  the User-Password.
		#
		#  Proxying the tunneled EAP-GTC session is a bad idea,
		#  the users password will go over the wire in plain-text,
		#  for anyone to see.
		#
		gtc {
			#  The default challenge, which many clients
			#  ignore..
			#challenge = "Password: "

			#  The plain-text response which comes back
			#  is put into a User-Password attribute,
			#  and passed to another module for
			#  authentication.  This allows the EAP-GTC
			#  response to be checked against plain-text,
			#  or crypt'd passwords.
			#
			#  If you say "Local" instead of "PAP", then
			#  the module will look for a User-Password
			#  configured for the request, and do the
			#  authentication itself.
			#
			auth_type = PAP
		}

		## EAP-TLS
		#
		#  To generate ctest certificates, run the script
		#
		#	../scripts/certs.sh
		#
		#  The documents on http://www.freeradius.org/doc
		#  are old, but may be helpful.
		#
		#  See also:
		#
		#  http://www.dslreports.com/forum/remark,9286052~mode=flat
		#
		tls {
			private_key_password = whatever
			private_key_file = ${raddbdir}/certs/cert-srv.pem

			#  If Private key & Certificate are located in
			#  the same file, then private_key_file &
			#  certificate_file must contain the same file
			#  name.
			certificate_file = ${raddbdir}/certs/cert-srv.pem

			#  Trusted Root CA list
			CA_file = ${raddbdir}/certs/demoCA/cacert.pem

			dh_file = ${raddbdir}/certs/dh
			random_file = ${raddbdir}/certs/random

			#
			#  This can never exceed the size of a RADIUS
			#  packet (4096 bytes), and is preferably half
			#  that, to accomodate other attributes in
			#  RADIUS packet.  On most APs the MAX packet
			#  length is configured between 1500 - 1600
			#  In these cases, fragment size should be
			#  1024 or less.
			#
			fragment_size = 1024

			#  include_length is a flag which is
			#  by default set to yes If set to
			#  yes, Total Length of the message is
			#  included in EVERY packet we send.
			#  If set to no, Total Length of the
			#  message is included ONLY in the
			#  First packet of a fragment series.
			#
		#	include_length = yes

			#  Check the Certificate Revocation List
			#  
			#  1) Copy CA certificates and CRLs to same directory.
			#  2) Execute 'c_rehash <CA certs&CRLs Directory>'.
			#    'c_rehash' is OpenSSL's command.
			#  3) Add 'CA_path=<CA certs&CRLs directory>'
			#      to radiusd.conf's tls section.
			#  4) uncomment the line below.
			#  5) Restart radiusd
		#	check_crl = yes

		       #
		       #  If check_cert_issuer is set, the value will
		       #  be checked against the DN of the issuer in
		       #  the client certificate.  If the values do not
		       #  match, the cerficate verification will fail,
		       #  rejecting the user.
		       #
		#       check_cert_issuer = "/C=GB/ST=Berkshire/L=Newbury/O=My Company Ltd"

		       #
		       #  If check_cert_cn is set, the value will
		       #  be xlat'ed and checked against the CN
		       #  in the client certificate.  If the values
		       #  do not match, the certificate verification
		       #  will fail rejecting the user.
		       #
		       #  This check is done only if the previous
		       #  "check_cert_issuer" is not set, or if
		       #  the check succeeds.
		       #
		#	check_cert_cn = %{User-Name}
		#
			# Set this option to specify the allowed
			# TLS cipher suites.  The format is listed
			# in "man 1 ciphers".
		#	cipher_list = "DEFAULT"
		}
		
		#  The TTLS module implements the EAP-TTLS protocol,
		#  which can be described as EAP inside of Diameter,
		#  inside of TLS, inside of EAP, inside of RADIUS...
		#
		#  Surprisingly, it works quite well.
		#
		#  The TTLS module needs the TLS module to be installed
		#  and configured, in order to use the TLS tunnel
		#  inside of the EAP packet.  You will still need to
		#  configure the TLS module, even if you do not want
		#  to deploy EAP-TLS in your network.  Users will not
		#  be able to request EAP-TLS, as it requires them to
		#  have a client certificate.  EAP-TTLS does not
		#  require a client certificate.
		#
		ttls {
			#  The tunneled EAP session needs a default
			#  EAP type which is separate from the one for
			#  the non-tunneled EAP module.  Inside of the
			#  TTLS tunnel, we recommend using EAP-MD5.
			#  If the request does not contain an EAP
			#  conversation, then this configuration entry
			#  is ignored.
			default_eap_type = mschapv2
			
			#  The tunneled authentication request does
			#  not usually contain useful attributes
			#  like 'Calling-Station-Id', etc.  These
			#  attributes are outside of the tunnel,
			#  and normally unavailable to the tunneled
			#  authentication request.
			#
			#  By setting this configuration entry to
			#  'yes', any attribute which NOT in the
			#  tunneled authentication request, but
			#  which IS available outside of the tunnel,
			#  is copied to the tunneled request.
			#
			# allowed values: {no, yes}
		#	copy_request_to_tunnel = no

			#  The reply attributes sent to the NAS are
			#  usually based on the name of the user
			#  'outside' of the tunnel (usually
			#  'anonymous').  If you want to send the
			#  reply attributes based on the user name
			#  inside of the tunnel, then set this
			#  configuration entry to 'yes', and the reply
			#  to the NAS will be taken from the reply to
			#  the tunneled request.
			#
			# allowed values: {no, yes}
		#	use_tunneled_reply = no
		}

		##################################################
		#
		#  !!!!! WARNINGS for Windows compatibility  !!!!!
		#
		##################################################
		#
		#  If you see the server send an Access-Challenge,
		#  and the client never sends another Access-Request,
		#  then
		#
		#		STOP!
		#
		#  The server certificate has to have special OID's
		#  in it, or else the Microsoft clients will silently
		#  fail.  See the "scripts/xpextensions" file for
		#  details, and the following page:
		#
		#	http://support.microsoft.com/kb/814394/en-us
		#
		#  For additional Windows XP SP2 issues, see:
		#
		#	http://support.microsoft.com/kb/885453/en-us
		#
		#  Note that we do not necessarily agree with their
		#  explanation... but the fix does appear to work.
		#
		##################################################

		#
		#  The tunneled EAP session needs a default EAP type
		#  which is separate from the one for the non-tunneled
		#  EAP module.  Inside of the TLS/PEAP tunnel, we
		#  recommend using EAP-MS-CHAPv2.
		#
		#  The PEAP module needs the TLS module to be installed
		#  and configured, in order to use the TLS tunnel
		#  inside of the EAP packet.  You will still need to
		#  configure the TLS module, even if you do not want
		#  to deploy EAP-TLS in your network.  Users will not
		#  be able to request EAP-TLS, as it requires them to
		#  have a client certificate.  EAP-PEAP does not
		#  require a client certificate.
		#
		peap {
			#  The tunneled EAP session needs a default
			#  EAP type which is separate from the one for
			#  the non-tunneled EAP module.  Inside of the
			#  PEAP tunnel, we recommend using MS-CHAPv2,
			#  as that is the default type supported by
			#  Windows clients.
			default_eap_type = mschapv2

			#  the PEAP module also has these configuration
			#  items, which are the same as for TTLS.
			#	copy_request_to_tunnel = no
			#	use_tunneled_reply = no

			#  When the tunneled session is proxied, the
			#  home server may not understand EAP-MSCHAP-V2.
			#  Set this entry to "no" to proxy the tunneled
			#  EAP-MSCHAP-V2 as normal MSCHAPv2.
			#	proxy_tunneled_request_as_eap = yes
		}

		#
		#  This takes no configuration.
		#
		#  Note that it is the EAP MS-CHAPv2 sub-module, not
		#  the main 'mschap' module.
		#
		#  Note also that in order for this sub-module to work,
		#  the main 'mschap' module MUST ALSO be configured.
		#
		#  This module is the *Microsoft* implementation of MS-CHAPv2
		#  in EAP.  There is another (incompatible) implementation
		#  of MS-CHAPv2 in EAP by Cisco, which FreeRADIUS does not
		#  currently support.
		#
		mschapv2 {
		}
	}