@c -*-texinfo-*- @c This is part of the GNU Emacs Lisp Reference Manual. @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001, 2002, @c 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. @c See the file elisp.texi for copying conditions. @setfilename ../info/control @node Control Structures, Variables, Evaluation, Top @chapter Control Structures @cindex special forms for control structures @cindex control structures A Lisp program consists of expressions or @dfn{forms} (@pxref{Forms}). We control the order of execution of these forms by enclosing them in @dfn{control structures}. Control structures are special forms which control when, whether, or how many times to execute the forms they contain. The simplest order of execution is sequential execution: first form @var{a}, then form @var{b}, and so on. This is what happens when you write several forms in succession in the body of a function, or at top level in a file of Lisp code---the forms are executed in the order written. We call this @dfn{textual order}. For example, if a function body consists of two forms @var{a} and @var{b}, evaluation of the function evaluates first @var{a} and then @var{b}. The result of evaluating @var{b} becomes the value of the function. Explicit control structures make possible an order of execution other than sequential. Emacs Lisp provides several kinds of control structure, including other varieties of sequencing, conditionals, iteration, and (controlled) jumps---all discussed below. The built-in control structures are special forms since their subforms are not necessarily evaluated or not evaluated sequentially. You can use macros to define your own control structure constructs (@pxref{Macros}). @menu * Sequencing:: Evaluation in textual order. * Conditionals:: @code{if}, @code{cond}, @code{when}, @code{unless}. * Combining Conditions:: @code{and}, @code{or}, @code{not}. * Iteration:: @code{while} loops. * Nonlocal Exits:: Jumping out of a sequence. @end menu @node Sequencing @section Sequencing Evaluating forms in the order they appear is the most common way control passes from one form to another. In some contexts, such as in a function body, this happens automatically. Elsewhere you must use a control structure construct to do this: @code{progn}, the simplest control construct of Lisp. A @code{progn} special form looks like this: @example @group (progn @var{a} @var{b} @var{c} @dots{}) @end group @end example @noindent and it says to execute the forms @var{a}, @var{b}, @var{c}, and so on, in that order. These forms are called the @dfn{body} of the @code{progn} form. The value of the last form in the body becomes the value of the entire @code{progn}. @code{(progn)} returns @code{nil}. @cindex implicit @code{progn} In the early days of Lisp, @code{progn} was the only way to execute two or more forms in succession and use the value of the last of them. But programmers found they often needed to use a @code{progn} in the body of a function, where (at that time) only one form was allowed. So the body of a function was made into an ``implicit @code{progn}'': several forms are allowed just as in the body of an actual @code{progn}. Many other control structures likewise contain an implicit @code{progn}. As a result, @code{progn} is not used as much as it was many years ago. It is needed now most often inside an @code{unwind-protect}, @code{and}, @code{or}, or in the @var{then}-part of an @code{if}. @defspec progn forms@dots{} This special form evaluates all of the @var{forms}, in textual order, returning the result of the final form. @example @group (progn (print "The first form") (print "The second form") (print "The third form")) @print{} "The first form" @print{} "The second form" @print{} "The third form" @result{} "The third form" @end group @end example @end defspec Two other control constructs likewise evaluate a series of forms but return a different value: @defspec prog1 form1 forms@dots{} This special form evaluates @var{form1} and all of the @var{forms}, in textual order, returning the result of @var{form1}. @example @group (prog1 (print "The first form") (print "The second form") (print "The third form")) @print{} "The first form" @print{} "The second form" @print{} "The third form" @result{} "The first form" @end group @end example Here is a way to remove the first element from a list in the variable @code{x}, then return the value of that former element: @example (prog1 (car x) (setq x (cdr x))) @end example @end defspec @defspec prog2 form1 form2 forms@dots{} This special form evaluates @var{form1}, @var{form2}, and all of the following @var{forms}, in textual order, returning the result of @var{form2}. @example @group (prog2 (print "The first form") (print "The second form") (print "The third form")) @print{} "The first form" @print{} "The second form" @print{} "The third form" @result{} "The second form" @end group @end example @end defspec @node Conditionals @section Conditionals @cindex conditional evaluation Conditional control structures choose among alternatives. Emacs Lisp has four conditional forms: @code{if}, which is much the same as in other languages; @code{when} and @code{unless}, which are variants of @code{if}; and @code{cond}, which is a generalized case statement. @defspec if condition then-form else-forms@dots{} @code{if} chooses between the @var{then-form} and the @var{else-forms} based on the value of @var{condition}. If the evaluated @var{condition} is non-@code{nil}, @var{then-form} is evaluated and the result returned. Otherwise, the @var{else-forms} are evaluated in textual order, and the value of the last one is returned. (The @var{else} part of @code{if} is an example of an implicit @code{progn}. @xref{Sequencing}.) If @var{condition} has the value @code{nil}, and no @var{else-forms} are given, @code{if} returns @code{nil}. @code{if} is a special form because the branch that is not selected is never evaluated---it is ignored. Thus, in the example below, @code{true} is not printed because @code{print} is never called. @example @group (if nil (print 'true) 'very-false) @result{} very-false @end group @end example @end defspec @defmac when condition then-forms@dots{} This is a variant of @code{if} where there are no @var{else-forms}, and possibly several @var{then-forms}. In particular, @example (when @var{condition} @var{a} @var{b} @var{c}) @end example @noindent is entirely equivalent to @example (if @var{condition} (progn @var{a} @var{b} @var{c}) nil) @end example @end defmac @defmac unless condition forms@dots{} This is a variant of @code{if} where there is no @var{then-form}: @example (unless @var{condition} @var{a} @var{b} @var{c}) @end example @noindent is entirely equivalent to @example (if @var{condition} nil @var{a} @var{b} @var{c}) @end example @end defmac @defspec cond clause@dots{} @code{cond} chooses among an arbitrary number of alternatives. Each @var{clause} in the @code{cond} must be a list. The @sc{car} of this list is the @var{condition}; the remaining elements, if any, the @var{body-forms}. Thus, a clause looks like this: @example (@var{condition} @var{body-forms}@dots{}) @end example @code{cond} tries the clauses in textual order, by evaluating the @var{condition} of each clause. If the value of @var{condition} is non-@code{nil}, the clause ``succeeds''; then @code{cond} evaluates its @var{body-forms}, and the value of the last of @var{body-forms} becomes the value of the @code{cond}. The remaining clauses are ignored. If the value of @var{condition} is @code{nil}, the clause ``fails,'' so the @code{cond} moves on to the following clause, trying its @var{condition}. If every @var{condition} evaluates to @code{nil}, so that every clause fails, @code{cond} returns @code{nil}. A clause may also look like this: @example (@var{condition}) @end example @noindent Then, if @var{condition} is non-@code{nil} when tested, the value of @var{condition} becomes the value of the @code{cond} form. The following example has four clauses, which test for the cases where the value of @code{x} is a number, string, buffer and symbol, respectively: @example @group (cond ((numberp x) x) ((stringp x) x) ((bufferp x) (setq temporary-hack x) ; @r{multiple body-forms} (buffer-name x)) ; @r{in one clause} ((symbolp x) (symbol-value x))) @end group @end example Often we want to execute the last clause whenever none of the previous clauses was successful. To do this, we use @code{t} as the @var{condition} of the last clause, like this: @code{(t @var{body-forms})}. The form @code{t} evaluates to @code{t}, which is never @code{nil}, so this clause never fails, provided the @code{cond} gets to it at all. For example, @example @group (setq a 5) (cond ((eq a 'hack) 'foo) (t "default")) @result{} "default" @end group @end example @noindent This @code{cond} expression returns @code{foo} if the value of @code{a} is @code{hack}, and returns the string @code{"default"} otherwise. @end defspec Any conditional construct can be expressed with @code{cond} or with @code{if}. Therefore, the choice between them is a matter of style. For example: @example @group (if @var{a} @var{b} @var{c}) @equiv{} (cond (@var{a} @var{b}) (t @var{c})) @end group @end example @node Combining Conditions @section Constructs for Combining Conditions This section describes three constructs that are often used together with @code{if} and @code{cond} to express complicated conditions. The constructs @code{and} and @code{or} can also be used individually as kinds of multiple conditional constructs. @defun not condition This function tests for the falsehood of @var{condition}. It returns @code{t} if @var{condition} is @code{nil}, and @code{nil} otherwise. The function @code{not} is identical to @code{null}, and we recommend using the name @code{null} if you are testing for an empty list. @end defun @defspec and conditions@dots{} The @code{and} special form tests whether all the @var{conditions} are true. It works by evaluating the @var{conditions} one by one in the order written. If any of the @var{conditions} evaluates to @code{nil}, then the result of the @code{and} must be @code{nil} regardless of the remaining @var{conditions}; so @code{and} returns @code{nil} right away, ignoring the remaining @var{conditions}. If all the @var{conditions} turn out non-@code{nil}, then the value of the last of them becomes the value of the @code{and} form. Just @code{(and)}, with no @var{conditions}, returns @code{t}, appropriate because all the @var{conditions} turned out non-@code{nil}. (Think about it; which one did not?) Here is an example. The first condition returns the integer 1, which is not @code{nil}. Similarly, the second condition returns the integer 2, which is not @code{nil}. The third condition is @code{nil}, so the remaining condition is never evaluated. @example @group (and (print 1) (print 2) nil (print 3)) @print{} 1 @print{} 2 @result{} nil @end group @end example Here is a more realistic example of using @code{and}: @example @group (if (and (consp foo) (eq (car foo) 'x)) (message "foo is a list starting with x")) @end group @end example @noindent Note that @code{(car foo)} is not executed if @code{(consp foo)} returns @code{nil}, thus avoiding an error. @code{and} expressions can also be written using either @code{if} or @code{cond}. Here's how: @example @group (and @var{arg1} @var{arg2} @var{arg3}) @equiv{} (if @var{arg1} (if @var{arg2} @var{arg3})) @equiv{} (cond (@var{arg1} (cond (@var{arg2} @var{arg3})))) @end group @end example @end defspec @defspec or conditions@dots{} The @code{or} special form tests whether at least one of the @var{conditions} is true. It works by evaluating all the @var{conditions} one by one in the order written. If any of the @var{conditions} evaluates to a non-@code{nil} value, then the result of the @code{or} must be non-@code{nil}; so @code{or} returns right away, ignoring the remaining @var{conditions}. The value it returns is the non-@code{nil} value of the condition just evaluated. If all the @var{conditions} turn out @code{nil}, then the @code{or} expression returns @code{nil}. Just @code{(or)}, with no @var{conditions}, returns @code{nil}, appropriate because all the @var{conditions} turned out @code{nil}. (Think about it; which one did not?) For example, this expression tests whether @code{x} is either @code{nil} or the integer zero: @example (or (eq x nil) (eq x 0)) @end example Like the @code{and} construct, @code{or} can be written in terms of @code{cond}. For example: @example @group (or @var{arg1} @var{arg2} @var{arg3}) @equiv{} (cond (@var{arg1}) (@var{arg2}) (@var{arg3})) @end group @end example You could almost write @code{or} in terms of @code{if}, but not quite: @example @group (if @var{arg1} @var{arg1} (if @var{arg2} @var{arg2} @var{arg3})) @end group @end example @noindent This is not completely equivalent because it can evaluate @var{arg1} or @var{arg2} twice. By contrast, @code{(or @var{arg1} @var{arg2} @var{arg3})} never evaluates any argument more than once. @end defspec @node Iteration @section Iteration @cindex iteration @cindex recursion Iteration means executing part of a program repetitively. For example, you might want to repeat some computation once for each element of a list, or once for each integer from 0 to @var{n}. You can do this in Emacs Lisp with the special form @code{while}: @defspec while condition forms@dots{} @code{while} first evaluates @var{condition}. If the result is non-@code{nil}, it evaluates @var{forms} in textual order. Then it reevaluates @var{condition}, and if the result is non-@code{nil}, it evaluates @var{forms} again. This process repeats until @var{condition} evaluates to @code{nil}. There is no limit on the number of iterations that may occur. The loop will continue until either @var{condition} evaluates to @code{nil} or until an error or @code{throw} jumps out of it (@pxref{Nonlocal Exits}). The value of a @code{while} form is always @code{nil}. @example @group (setq num 0) @result{} 0 @end group @group (while (< num 4) (princ (format "Iteration %d." num)) (setq num (1+ num))) @print{} Iteration 0. @print{} Iteration 1. @print{} Iteration 2. @print{} Iteration 3. @result{} nil @end group @end example To write a ``repeat...until'' loop, which will execute something on each iteration and then do the end-test, put the body followed by the end-test in a @code{progn} as the first argument of @code{while}, as shown here: @example @group (while (progn (forward-line 1) (not (looking-at "^$")))) @end group @end example @noindent This moves forward one line and continues moving by lines until it reaches an empty line. It is peculiar in that the @code{while} has no body, just the end test (which also does the real work of moving point). @end defspec The @code{dolist} and @code{dotimes} macros provide convenient ways to write two common kinds of loops. @defmac dolist (var list [result]) body@dots{} This construct executes @var{body} once for each element of @var{list}, binding the variable @var{var} locally to hold the current element. Then it returns the value of evaluating @var{result}, or @code{nil} if @var{result} is omitted. For example, here is how you could use @code{dolist} to define the @code{reverse} function: @example (defun reverse (list) (let (value) (dolist (elt list value) (setq value (cons elt value))))) @end example @end defmac @defmac dotimes (var count [result]) body@dots{} This construct executes @var{body} once for each integer from 0 (inclusive) to @var{count} (exclusive), binding the variable @var{var} to the integer for the current iteration. Then it returns the value of evaluating @var{result}, or @code{nil} if @var{result} is omitted. Here is an example of using @code{dotimes} to do something 100 times: @example (dotimes (i 100) (insert "I will not obey absurd orders\n")) @end example @end defmac @node Nonlocal Exits @section Nonlocal Exits @cindex nonlocal exits A @dfn{nonlocal exit} is a transfer of control from one point in a program to another remote point. Nonlocal exits can occur in Emacs Lisp as a result of errors; you can also use them under explicit control. Nonlocal exits unbind all variable bindings made by the constructs being exited. @menu * Catch and Throw:: Nonlocal exits for the program's own purposes. * Examples of Catch:: Showing how such nonlocal exits can be written. * Errors:: How errors are signaled and handled. * Cleanups:: Arranging to run a cleanup form if an error happens. @end menu @node Catch and Throw @subsection Explicit Nonlocal Exits: @code{catch} and @code{throw} Most control constructs affect only the flow of control within the construct itself. The function @code{throw} is the exception to this rule of normal program execution: it performs a nonlocal exit on request. (There are other exceptions, but they are for error handling only.) @code{throw} is used inside a @code{catch}, and jumps back to that @code{catch}. For example: @example @group (defun foo-outer () (catch 'foo (foo-inner))) (defun foo-inner () @dots{} (if x (throw 'foo t)) @dots{}) @end group @end example @noindent The @code{throw} form, if executed, transfers control straight back to the corresponding @code{catch}, which returns immediately. The code following the @code{throw} is not executed. The second argument of @code{throw} is used as the return value of the @code{catch}. The function @code{throw} finds the matching @code{catch} based on the first argument: it searches for a @code{catch} whose first argument is @code{eq} to the one specified in the @code{throw}. If there is more than one applicable @code{catch}, the innermost one takes precedence. Thus, in the above example, the @code{throw} specifies @code{foo}, and the @code{catch} in @code{foo-outer} specifies the same symbol, so that @code{catch} is the applicable one (assuming there is no other matching @code{catch} in between). Executing @code{throw} exits all Lisp constructs up to the matching @code{catch}, including function calls. When binding constructs such as @code{let} or function calls are exited in this way, the bindings are unbound, just as they are when these constructs exit normally (@pxref{Local Variables}). Likewise, @code{throw} restores the buffer and position saved by @code{save-excursion} (@pxref{Excursions}), and the narrowing status saved by @code{save-restriction} and the window selection saved by @code{save-window-excursion} (@pxref{Window Configurations}). It also runs any cleanups established with the @code{unwind-protect} special form when it exits that form (@pxref{Cleanups}). The @code{throw} need not appear lexically within the @code{catch} that it jumps to. It can equally well be called from another function called within the @code{catch}. As long as the @code{throw} takes place chronologically after entry to the @code{catch}, and chronologically before exit from it, it has access to that @code{catch}. This is why @code{throw} can be used in commands such as @code{exit-recursive-edit} that throw back to the editor command loop (@pxref{Recursive Editing}). @cindex CL note---only @code{throw} in Emacs @quotation @b{Common Lisp note:} Most other versions of Lisp, including Common Lisp, have several ways of transferring control nonsequentially: @code{return}, @code{return-from}, and @code{go}, for example. Emacs Lisp has only @code{throw}. @end quotation @defspec catch tag body@dots{} @cindex tag on run time stack @code{catch} establishes a return point for the @code{throw} function. The return point is distinguished from other such return points by @var{tag}, which may be any Lisp object except @code{nil}. The argument @var{tag} is evaluated normally before the return point is established. With the return point in effect, @code{catch} evaluates the forms of the @var{body} in textual order. If the forms execute normally (without error or nonlocal exit) the value of the last body form is returned from the @code{catch}. If a @code{throw} is executed during the execution of @var{body}, specifying the same value @var{tag}, the @code{catch} form exits immediately; the value it returns is whatever was specified as the second argument of @code{throw}. @end defspec @defun throw tag value The purpose of @code{throw} is to return from a return point previously established with @code{catch}. The argument @var{tag} is used to choose among the various existing return points; it must be @code{eq} to the value specified in the @code{catch}. If multiple return points match @var{tag}, the innermost one is used. The argument @var{value} is used as the value to return from that @code{catch}. @kindex no-catch If no return point is in effect with tag @var{tag}, then a @code{no-catch} error is signaled with data @code{(@var{tag} @var{value})}. @end defun @node Examples of Catch @subsection Examples of @code{catch} and @code{throw} One way to use @code{catch} and @code{throw} is to exit from a doubly nested loop. (In most languages, this would be done with a ``go to.'') Here we compute @code{(foo @var{i} @var{j})} for @var{i} and @var{j} varying from 0 to 9: @example @group (defun search-foo () (catch 'loop (let ((i 0)) (while (< i 10) (let ((j 0)) (while (< j 10) (if (foo i j) (throw 'loop (list i j))) (setq j (1+ j)))) (setq i (1+ i)))))) @end group @end example @noindent If @code{foo} ever returns non-@code{nil}, we stop immediately and return a list of @var{i} and @var{j}. If @code{foo} always returns @code{nil}, the @code{catch} returns normally, and the value is @code{nil}, since that is the result of the @code{while}. Here are two tricky examples, slightly different, showing two return points at once. First, two return points with the same tag, @code{hack}: @example @group (defun catch2 (tag) (catch tag (throw 'hack 'yes))) @result{} catch2 @end group @group (catch 'hack (print (catch2 'hack)) 'no) @print{} yes @result{} no @end group @end example @noindent Since both return points have tags that match the @code{throw}, it goes to the inner one, the one established in @code{catch2}. Therefore, @code{catch2} returns normally with value @code{yes}, and this value is printed. Finally the second body form in the outer @code{catch}, which is @code{'no}, is evaluated and returned from the outer @code{catch}. Now let's change the argument given to @code{catch2}: @example @group (catch 'hack (print (catch2 'quux)) 'no) @result{} yes @end group @end example @noindent We still have two return points, but this time only the outer one has the tag @code{hack}; the inner one has the tag @code{quux} instead. Therefore, @code{throw} makes the outer @code{catch} return the value @code{yes}. The function @code{print} is never called, and the body-form @code{'no} is never evaluated. @node Errors @subsection Errors @cindex errors When Emacs Lisp attempts to evaluate a form that, for some reason, cannot be evaluated, it @dfn{signals} an @dfn{error}. When an error is signaled, Emacs's default reaction is to print an error message and terminate execution of the current command. This is the right thing to do in most cases, such as if you type @kbd{C-f} at the end of the buffer. In complicated programs, simple termination may not be what you want. For example, the program may have made temporary changes in data structures, or created temporary buffers that should be deleted before the program is finished. In such cases, you would use @code{unwind-protect} to establish @dfn{cleanup expressions} to be evaluated in case of error. (@xref{Cleanups}.) Occasionally, you may wish the program to continue execution despite an error in a subroutine. In these cases, you would use @code{condition-case} to establish @dfn{error handlers} to recover control in case of error. Resist the temptation to use error handling to transfer control from one part of the program to another; use @code{catch} and @code{throw} instead. @xref{Catch and Throw}. @menu * Signaling Errors:: How to report an error. * Processing of Errors:: What Emacs does when you report an error. * Handling Errors:: How you can trap errors and continue execution. * Error Symbols:: How errors are classified for trapping them. @end menu @node Signaling Errors @subsubsection How to Signal an Error @cindex signaling errors @dfn{Signaling} an error means beginning error processing. Error processing normally aborts all or part of the running program and returns to a point that is set up to handle the error (@pxref{Processing of Errors}). Here we describe how to signal an error. Most errors are signaled ``automatically'' within Lisp primitives which you call for other purposes, such as if you try to take the @sc{car} of an integer or move forward a character at the end of the buffer. You can also signal errors explicitly with the functions @code{error} and @code{signal}. Quitting, which happens when the user types @kbd{C-g}, is not considered an error, but it is handled almost like an error. @xref{Quitting}. Every error specifies an error message, one way or another. The message should state what is wrong (``File does not exist''), not how things ought to be (``File must exist''). The convention in Emacs Lisp is that error messages should start with a capital letter, but should not end with any sort of punctuation. @defun error format-string &rest args This function signals an error with an error message constructed by applying @code{format} (@pxref{Formatting Strings}) to @var{format-string} and @var{args}. These examples show typical uses of @code{error}: @example @group (error "That is an error -- try something else") @error{} That is an error -- try something else @end group @group (error "You have committed %d errors" 10) @error{} You have committed 10 errors @end group @end example @code{error} works by calling @code{signal} with two arguments: the error symbol @code{error}, and a list containing the string returned by @code{format}. @strong{Warning:} If you want to use your own string as an error message verbatim, don't just write @code{(error @var{string})}. If @var{string} contains @samp{%}, it will be interpreted as a format specifier, with undesirable results. Instead, use @code{(error "%s" @var{string})}. @end defun @defun signal error-symbol data @anchor{Definition of signal} This function signals an error named by @var{error-symbol}. The argument @var{data} is a list of additional Lisp objects relevant to the circumstances of the error. The argument @var{error-symbol} must be an @dfn{error symbol}---a symbol bearing a property @code{error-conditions} whose value is a list of condition names. This is how Emacs Lisp classifies different sorts of errors. @xref{Error Symbols}, for a description of error symbols, error conditions and condition names. If the error is not handled, the two arguments are used in printing the error message. Normally, this error message is provided by the @code{error-message} property of @var{error-symbol}. If @var{data} is non-@code{nil}, this is followed by a colon and a comma separated list of the unevaluated elements of @var{data}. For @code{error}, the error message is the @sc{car} of @var{data} (that must be a string). Subcategories of @code{file-error} are handled specially. The number and significance of the objects in @var{data} depends on @var{error-symbol}. For example, with a @code{wrong-type-arg} error, there should be two objects in the list: a predicate that describes the type that was expected, and the object that failed to fit that type. Both @var{error-symbol} and @var{data} are available to any error handlers that handle the error: @code{condition-case} binds a local variable to a list of the form @code{(@var{error-symbol} .@: @var{data})} (@pxref{Handling Errors}). The function @code{signal} never returns (though in older Emacs versions it could sometimes return). @smallexample @group (signal 'wrong-number-of-arguments '(x y)) @error{} Wrong number of arguments: x, y @end group @group (signal 'no-such-error '("My unknown error condition")) @error{} peculiar error: "My unknown error condition" @end group @end smallexample @end defun @cindex CL note---no continuable errors @quotation @b{Common Lisp note:} Emacs Lisp has nothing like the Common Lisp concept of continuable errors. @end quotation @node Processing of Errors @subsubsection How Emacs Processes Errors When an error is signaled, @code{signal} searches for an active @dfn{handler} for the error. A handler is a sequence of Lisp expressions designated to be executed if an error happens in part of the Lisp program. If the error has an applicable handler, the handler is executed, and control resumes following the handler. The handler executes in the environment of the @code{condition-case} that established it; all functions called within that @code{condition-case} have already been exited, and the handler cannot return to them. If there is no applicable handler for the error, it terminates the current command and returns control to the editor command loop. (The command loop has an implicit handler for all kinds of errors.) The command loop's handler uses the error symbol and associated data to print an error message. You can use the variable @code{command-error-function} to control how this is done: @defvar command-error-function This variable, if non-@code{nil}, specifies a function to use to handle errors that return control to the Emacs command loop. The function should take three arguments: @var{data}, a list of the same form that @code{condition-case} would bind to its variable; @var{context}, a string describing the situation in which the error occurred, or (more often) @code{nil}; and @var{caller}, the Lisp function which called the primitive that signaled the error. @end defvar @cindex @code{debug-on-error} use An error that has no explicit handler may call the Lisp debugger. The debugger is enabled if the variable @code{debug-on-error} (@pxref{Error Debugging}) is non-@code{nil}. Unlike error handlers, the debugger runs in the environment of the error, so that you can examine values of variables precisely as they were at the time of the error. @node Handling Errors @subsubsection Writing Code to Handle Errors @cindex error handler @cindex handling errors The usual effect of signaling an error is to terminate the command that is running and return immediately to the Emacs editor command loop. You can arrange to trap errors occurring in a part of your program by establishing an error handler, with the special form @code{condition-case}. A simple example looks like this: @example @group (condition-case nil (delete-file filename) (error nil)) @end group @end example @noindent This deletes the file named @var{filename}, catching any error and returning @code{nil} if an error occurs. The second argument of @code{condition-case} is called the @dfn{protected form}. (In the example above, the protected form is a call to @code{delete-file}.) The error handlers go into effect when this form begins execution and are deactivated when this form returns. They remain in effect for all the intervening time. In particular, they are in effect during the execution of functions called by this form, in their subroutines, and so on. This is a good thing, since, strictly speaking, errors can be signaled only by Lisp primitives (including @code{signal} and @code{error}) called by the protected form, not by the protected form itself. The arguments after the protected form are handlers. Each handler lists one or more @dfn{condition names} (which are symbols) to specify which errors it will handle. The error symbol specified when an error is signaled also defines a list of condition names. A handler applies to an error if they have any condition names in common. In the example above, there is one handler, and it specifies one condition name, @code{error}, which covers all errors. The search for an applicable handler checks all the established handlers starting with the most recently established one. Thus, if two nested @code{condition-case} forms offer to handle the same error, the inner of the two gets to handle it. If an error is handled by some @code{condition-case} form, this ordinarily prevents the debugger from being run, even if @code{debug-on-error} says this error should invoke the debugger. @xref{Error Debugging}. If you want to be able to debug errors that are caught by a @code{condition-case}, set the variable @code{debug-on-signal} to a non-@code{nil} value. When an error is handled, control returns to the handler. Before this happens, Emacs unbinds all variable bindings made by binding constructs that are being exited and executes the cleanups of all @code{unwind-protect} forms that are exited. Once control arrives at the handler, the body of the handler is executed. After execution of the handler body, execution returns from the @code{condition-case} form. Because the protected form is exited completely before execution of the handler, the handler cannot resume execution at the point of the error, nor can it examine variable bindings that were made within the protected form. All it can do is clean up and proceed. The @code{condition-case} construct is often used to trap errors that are predictable, such as failure to open a file in a call to @code{insert-file-contents}. It is also used to trap errors that are totally unpredictable, such as when the program evaluates an expression read from the user. Error signaling and handling have some resemblance to @code{throw} and @code{catch} (@pxref{Catch and Throw}), but they are entirely separate facilities. An error cannot be caught by a @code{catch}, and a @code{throw} cannot be handled by an error handler (though using @code{throw} when there is no suitable @code{catch} signals an error that can be handled). @defspec condition-case var protected-form handlers@dots{} This special form establishes the error handlers @var{handlers} around the execution of @var{protected-form}. If @var{protected-form} executes without error, the value it returns becomes the value of the @code{condition-case} form; in this case, the @code{condition-case} has no effect. The @code{condition-case} form makes a difference when an error occurs during @var{protected-form}. Each of the @var{handlers} is a list of the form @code{(@var{conditions} @var{body}@dots{})}. Here @var{conditions} is an error condition name to be handled, or a list of condition names; @var{body} is one or more Lisp expressions to be executed when this handler handles an error. Here are examples of handlers: @smallexample @group (error nil) (arith-error (message "Division by zero")) ((arith-error file-error) (message "Either division by zero or failure to open a file")) @end group @end smallexample Each error that occurs has an @dfn{error symbol} that describes what kind of error it is. The @code{error-conditions} property of this symbol is a list of condition names (@pxref{Error Symbols}). Emacs searches all the active @code{condition-case} forms for a handler that specifies one or more of these condition names; the innermost matching @code{condition-case} handles the error. Within this @code{condition-case}, the first applicable handler handles the error. After executing the body of the handler, the @code{condition-case} returns normally, using the value of the last form in the handler body as the overall value. @cindex error description The argument @var{var} is a variable. @code{condition-case} does not bind this variable when executing the @var{protected-form}, only when it handles an error. At that time, it binds @var{var} locally to an @dfn{error description}, which is a list giving the particulars of the error. The error description has the form @code{(@var{error-symbol} . @var{data})}. The handler can refer to this list to decide what to do. For example, if the error is for failure opening a file, the file name is the second element of @var{data}---the third element of the error description. If @var{var} is @code{nil}, that means no variable is bound. Then the error symbol and associated data are not available to the handler. @end defspec @defun error-message-string error-description This function returns the error message string for a given error descriptor. It is useful if you want to handle an error by printing the usual error message for that error. @xref{Definition of signal}. @end defun @cindex @code{arith-error} example Here is an example of using @code{condition-case} to handle the error that results from dividing by zero. The handler displays the error message (but without a beep), then returns a very large number. @smallexample @group (defun safe-divide (dividend divisor) (condition-case err ;; @r{Protected form.} (/ dividend divisor) @end group @group ;; @r{The handler.} (arith-error ; @r{Condition.} ;; @r{Display the usual message for this error.} (message "%s" (error-message-string err)) 1000000))) @result{} safe-divide @end group @group (safe-divide 5 0) @print{} Arithmetic error: (arith-error) @result{} 1000000 @end group @end smallexample @noindent The handler specifies condition name @code{arith-error} so that it will handle only division-by-zero errors. Other kinds of errors will not be handled, at least not by this @code{condition-case}. Thus, @smallexample @group (safe-divide nil 3) @error{} Wrong type argument: number-or-marker-p, nil @end group @end smallexample Here is a @code{condition-case} that catches all kinds of errors, including those signaled with @code{error}: @smallexample @group (setq baz 34) @result{} 34 @end group @group (condition-case err (if (eq baz 35) t ;; @r{This is a call to the function @code{error}.} (error "Rats! The variable %s was %s, not 35" 'baz baz)) ;; @r{This is the handler; it is not a form.} (error (princ (format "The error was: %s" err)) 2)) @print{} The error was: (error "Rats! The variable baz was 34, not 35") @result{} 2 @end group @end smallexample @node Error Symbols @subsubsection Error Symbols and Condition Names @cindex error symbol @cindex error name @cindex condition name @cindex user-defined error @kindex error-conditions When you signal an error, you specify an @dfn{error symbol} to specify the kind of error you have in mind. Each error has one and only one error symbol to categorize it. This is the finest classification of errors defined by the Emacs Lisp language. These narrow classifications are grouped into a hierarchy of wider classes called @dfn{error conditions}, identified by @dfn{condition names}. The narrowest such classes belong to the error symbols themselves: each error symbol is also a condition name. There are also condition names for more extensive classes, up to the condition name @code{error} which takes in all kinds of errors (but not @code{quit}). Thus, each error has one or more condition names: @code{error}, the error symbol if that is distinct from @code{error}, and perhaps some intermediate classifications. In order for a symbol to be an error symbol, it must have an @code{error-conditions} property which gives a list of condition names. This list defines the conditions that this kind of error belongs to. (The error symbol itself, and the symbol @code{error}, should always be members of this list.) Thus, the hierarchy of condition names is defined by the @code{error-conditions} properties of the error symbols. Because quitting is not considered an error, the value of the @code{error-conditions} property of @code{quit} is just @code{(quit)}. @cindex peculiar error In addition to the @code{error-conditions} list, the error symbol should have an @code{error-message} property whose value is a string to be printed when that error is signaled but not handled. If the error symbol has no @code{error-message} property or if the @code{error-message} property exists, but is not a string, the error message @samp{peculiar error} is used. @xref{Definition of signal}. Here is how we define a new error symbol, @code{new-error}: @example @group (put 'new-error 'error-conditions '(error my-own-errors new-error)) @result{} (error my-own-errors new-error) @end group @group (put 'new-error 'error-message "A new error") @result{} "A new error" @end group @end example @noindent This error has three condition names: @code{new-error}, the narrowest classification; @code{my-own-errors}, which we imagine is a wider classification; and @code{error}, which is the widest of all. The error string should start with a capital letter but it should not end with a period. This is for consistency with the rest of Emacs. Naturally, Emacs will never signal @code{new-error} on its own; only an explicit call to @code{signal} (@pxref{Definition of signal}) in your code can do this: @example @group (signal 'new-error '(x y)) @error{} A new error: x, y @end group @end example This error can be handled through any of the three condition names. This example handles @code{new-error} and any other errors in the class @code{my-own-errors}: @example @group (condition-case foo (bar nil t) (my-own-errors nil)) @end group @end example The significant way that errors are classified is by their condition names---the names used to match errors with handlers. An error symbol serves only as a convenient way to specify the intended error message and list of condition names. It would be cumbersome to give @code{signal} a list of condition names rather than one error symbol. By contrast, using only error symbols without condition names would seriously decrease the power of @code{condition-case}. Condition names make it possible to categorize errors at various levels of generality when you write an error handler. Using error symbols alone would eliminate all but the narrowest level of classification. @xref{Standard Errors}, for a list of all the standard error symbols and their conditions. @node Cleanups @subsection Cleaning Up from Nonlocal Exits The @code{unwind-protect} construct is essential whenever you temporarily put a data structure in an inconsistent state; it permits you to make the data consistent again in the event of an error or throw. (Another more specific cleanup construct that is used only for changes in buffer contents is the atomic change group; @ref{Atomic Changes}.) @defspec unwind-protect body-form cleanup-forms@dots{} @cindex cleanup forms @cindex protected forms @cindex error cleanup @cindex unwinding @code{unwind-protect} executes @var{body-form} with a guarantee that the @var{cleanup-forms} will be evaluated if control leaves @var{body-form}, no matter how that happens. @var{body-form} may complete normally, or execute a @code{throw} out of the @code{unwind-protect}, or cause an error; in all cases, the @var{cleanup-forms} will be evaluated. If @var{body-form} finishes normally, @code{unwind-protect} returns the value of @var{body-form}, after it evaluates the @var{cleanup-forms}. If @var{body-form} does not finish, @code{unwind-protect} does not return any value in the normal sense. Only @var{body-form} is protected by the @code{unwind-protect}. If any of the @var{cleanup-forms} themselves exits nonlocally (via a @code{throw} or an error), @code{unwind-protect} is @emph{not} guaranteed to evaluate the rest of them. If the failure of one of the @var{cleanup-forms} has the potential to cause trouble, then protect it with another @code{unwind-protect} around that form. The number of currently active @code{unwind-protect} forms counts, together with the number of local variable bindings, against the limit @code{max-specpdl-size} (@pxref{Definition of max-specpdl-size,, Local Variables}). @end defspec For example, here we make an invisible buffer for temporary use, and make sure to kill it before finishing: @smallexample @group (save-excursion (let ((buffer (get-buffer-create " *temp*"))) (set-buffer buffer) (unwind-protect @var{body-form} (kill-buffer buffer)))) @end group @end smallexample @noindent You might think that we could just as well write @code{(kill-buffer (current-buffer))} and dispense with the variable @code{buffer}. However, the way shown above is safer, if @var{body-form} happens to get an error after switching to a different buffer! (Alternatively, you could write another @code{save-excursion} around @var{body-form}, to ensure that the temporary buffer becomes current again in time to kill it.) Emacs includes a standard macro called @code{with-temp-buffer} which expands into more or less the code shown above (@pxref{Definition of with-temp-buffer,, Current Buffer}). Several of the macros defined in this manual use @code{unwind-protect} in this way. @findex ftp-login Here is an actual example derived from an FTP package. It creates a process (@pxref{Processes}) to try to establish a connection to a remote machine. As the function @code{ftp-login} is highly susceptible to numerous problems that the writer of the function cannot anticipate, it is protected with a form that guarantees deletion of the process in the event of failure. Otherwise, Emacs might fill up with useless subprocesses. @smallexample @group (let ((win nil)) (unwind-protect (progn (setq process (ftp-setup-buffer host file)) (if (setq win (ftp-login process host user password)) (message "Logged in") (error "Ftp login failed"))) (or win (and process (delete-process process))))) @end group @end smallexample This example has a small bug: if the user types @kbd{C-g} to quit, and the quit happens immediately after the function @code{ftp-setup-buffer} returns but before the variable @code{process} is set, the process will not be killed. There is no easy way to fix this bug, but at least it is very unlikely. @ignore arch-tag: 8abc30d4-4d3a-47f9-b908-e9e971c18c6d @end ignore