regex.c   [plain text]


/* Extended regular expression matching and search library, version
   0.12.  (Implements POSIX draft P10003.2/D11.2, except for
   internationalization features.)

   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
   USA.	 */

/* AIX requires this to be the first thing in the file. */
#if defined (_AIX) && !defined (REGEX_MALLOC)
  #pragma alloca
#endif

#undef	_GNU_SOURCE
#define _GNU_SOURCE

#ifdef emacs
/* Converts the pointer to the char to BEG-based offset from the start.	 */
#define PTR_TO_OFFSET(d)						\
	POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING			\
			  ? (d) - string1 : (d) - (string2 - size1))
#define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
#else
#define PTR_TO_OFFSET(d) 0
#endif

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

/* We need this for `regex.h', and perhaps for the Emacs include files.	 */
#include <sys/types.h>

/* This is for other GNU distributions with internationalized messages.	 */
#if HAVE_LIBINTL_H || defined (_LIBC)
# include <libintl.h>
#else
# define gettext(msgid) (msgid)
#endif

#ifndef gettext_noop
/* This define is so xgettext can find the internationalizable
   strings.  */
#define gettext_noop(String) String
#endif

/* The `emacs' switch turns on certain matching commands
   that make sense only in Emacs. */
#ifdef emacs

#include "lisp.h"
#include "buffer.h"

/* Make syntax table lookup grant data in gl_state.  */
#define SYNTAX_ENTRY_VIA_PROPERTY

#include "syntax.h"
#include "charset.h"
#include "category.h"

#define malloc xmalloc
#define realloc xrealloc
#define free xfree

#else  /* not emacs */

/* If we are not linking with Emacs proper,
   we can't use the relocating allocator
   even if config.h says that we can.  */
#undef REL_ALLOC

#if defined (STDC_HEADERS) || defined (_LIBC)
#include <stdlib.h>
#else
char *malloc ();
char *realloc ();
#endif

/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
   If nothing else has been done, use the method below.	 */
#ifdef INHIBIT_STRING_HEADER
#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
#if !defined (bzero) && !defined (bcopy)
#undef INHIBIT_STRING_HEADER
#endif
#endif
#endif

/* This is the normal way of making sure we have a bcopy and a bzero.
   This is used in most programs--a few other programs avoid this
   by defining INHIBIT_STRING_HEADER.  */
#ifndef INHIBIT_STRING_HEADER
#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
#include <string.h>
#ifndef bcmp
#define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
#endif
#ifndef bcopy
#define bcopy(s, d, n)	memcpy ((d), (s), (n))
#endif
#ifndef bzero
#define bzero(s, n)	memset ((s), 0, (n))
#endif
#else
#include <strings.h>
#endif
#endif

/* Define the syntax stuff for \<, \>, etc.  */

/* This must be nonzero for the wordchar and notwordchar pattern
   commands in re_match_2.  */
#ifndef Sword
#define Sword 1
#endif

#ifdef SWITCH_ENUM_BUG
#define SWITCH_ENUM_CAST(x) ((int)(x))
#else
#define SWITCH_ENUM_CAST(x) (x)
#endif

#ifdef SYNTAX_TABLE

extern char *re_syntax_table;

#else /* not SYNTAX_TABLE */

/* How many characters in the character set.  */
#define CHAR_SET_SIZE 256

static char re_syntax_table[CHAR_SET_SIZE];

static void
init_syntax_once ()
{
   register int c;
   static int done = 0;

   if (done)
     return;

   bzero (re_syntax_table, sizeof re_syntax_table);

   for (c = 'a'; c <= 'z'; c++)
     re_syntax_table[c] = Sword;

   for (c = 'A'; c <= 'Z'; c++)
     re_syntax_table[c] = Sword;

   for (c = '0'; c <= '9'; c++)
     re_syntax_table[c] = Sword;

   re_syntax_table['_'] = Sword;

   done = 1;
}

#endif /* not SYNTAX_TABLE */

#define SYNTAX(c) re_syntax_table[c]

/* Dummy macros for non-Emacs environments.  */
#define BASE_LEADING_CODE_P(c) (0)
#define WORD_BOUNDARY_P(c1, c2) (0)
#define CHAR_HEAD_P(p) (1)
#define SINGLE_BYTE_CHAR_P(c) (1)
#define SAME_CHARSET_P(c1, c2) (1)
#define MULTIBYTE_FORM_LENGTH(p, s) (1)
#define STRING_CHAR(p, s) (*(p))
#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
  (c = ((p) == (end1) ? *(str2) : *(p)))
#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
  (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
#endif /* not emacs */

/* Get the interface, including the syntax bits.  */
#include "regex.h"

/* isalpha etc. are used for the character classes.  */
#include <ctype.h>

/* Jim Meyering writes:

   "... Some ctype macros are valid only for character codes that
   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
   using /bin/cc or gcc but without giving an ansi option).  So, all
   ctype uses should be through macros like ISPRINT...	If
   STDC_HEADERS is defined, then autoconf has verified that the ctype
   macros don't need to be guarded with references to isascii. ...
   Defining isascii to 1 should let any compiler worth its salt
   eliminate the && through constant folding."	*/

#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
#define ISASCII(c) 1
#else
#define ISASCII(c) isascii(c)
#endif

#ifdef isblank
#define ISBLANK(c) (ISASCII (c) && isblank (c))
#else
#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
#endif
#ifdef isgraph
#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
#else
#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
#endif

#define ISPRINT(c) (ISASCII (c) && isprint (c))
#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
#define ISALNUM(c) (ISASCII (c) && isalnum (c))
#define ISALPHA(c) (ISASCII (c) && isalpha (c))
#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
#define ISLOWER(c) (ISASCII (c) && islower (c))
#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
#define ISSPACE(c) (ISASCII (c) && isspace (c))
#define ISUPPER(c) (ISASCII (c) && isupper (c))
#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))

#ifndef NULL
#define NULL (void *)0
#endif

/* We remove any previous definition of `SIGN_EXTEND_CHAR',
   since ours (we hope) works properly with all combinations of
   machines, compilers, `char' and `unsigned char' argument types.
   (Per Bothner suggested the basic approach.)	*/
#undef SIGN_EXTEND_CHAR
#if __STDC__
#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
#else  /* not __STDC__ */
/* As in Harbison and Steele.  */
#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
#endif

/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
   use `alloca' instead of `malloc'.  This is because using malloc in
   re_search* or re_match* could cause memory leaks when C-g is used in
   Emacs; also, malloc is slower and causes storage fragmentation.  On
   the other hand, malloc is more portable, and easier to debug.

   Because we sometimes use alloca, some routines have to be macros,
   not functions -- `alloca'-allocated space disappears at the end of the
   function it is called in.  */

#ifdef REGEX_MALLOC

#define REGEX_ALLOCATE malloc
#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
#define REGEX_FREE free

#else /* not REGEX_MALLOC  */

/* Emacs already defines alloca, sometimes.  */
#ifndef alloca

/* Make alloca work the best possible way.  */
#ifdef __GNUC__
#define alloca __builtin_alloca
#else /* not __GNUC__ */
#if HAVE_ALLOCA_H
#include <alloca.h>
#else /* not __GNUC__ or HAVE_ALLOCA_H */
#if 0 /* It is a bad idea to declare alloca.  We always cast the result.  */
#ifndef _AIX /* Already did AIX, up at the top.	 */
char *alloca ();
#endif /* not _AIX */
#endif
#endif /* not HAVE_ALLOCA_H */
#endif /* not __GNUC__ */

#endif /* not alloca */

#define REGEX_ALLOCATE alloca

/* Assumes a `char *destination' variable.  */
#define REGEX_REALLOCATE(source, osize, nsize)				\
  (destination = (char *) alloca (nsize),				\
   bcopy (source, destination, osize),					\
   destination)

/* No need to do anything to free, after alloca.  */
#define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */

#endif /* not REGEX_MALLOC */

/* Define how to allocate the failure stack.  */

#if defined (REL_ALLOC) && defined (REGEX_MALLOC)

#define REGEX_ALLOCATE_STACK(size)				\
  r_alloc (&failure_stack_ptr, (size))
#define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
  r_re_alloc (&failure_stack_ptr, (nsize))
#define REGEX_FREE_STACK(ptr)					\
  r_alloc_free (&failure_stack_ptr)

#else /* not using relocating allocator */

#ifdef REGEX_MALLOC

#define REGEX_ALLOCATE_STACK malloc
#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
#define REGEX_FREE_STACK free

#else /* not REGEX_MALLOC */

#define REGEX_ALLOCATE_STACK alloca

#define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
   REGEX_REALLOCATE (source, osize, nsize)
/* No need to explicitly free anything.	 */
#define REGEX_FREE_STACK(arg)

#endif /* not REGEX_MALLOC */
#endif /* not using relocating allocator */


/* True if `size1' is non-NULL and PTR is pointing anywhere inside
   `string1' or just past its end.  This works if PTR is NULL, which is
   a good thing.  */
#define FIRST_STRING_P(ptr)					\
  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)

/* (Re)Allocate N items of type T using malloc, or fail.  */
#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
#define RETALLOC_IF(addr, n, t) \
  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))

#define BYTEWIDTH 8 /* In bits.	 */

#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))

#undef MAX
#undef MIN
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))

typedef char boolean;
#define false 0
#define true 1

static int re_match_2_internal ();

/* These are the command codes that appear in compiled regular
   expressions.	 Some opcodes are followed by argument bytes.  A
   command code can specify any interpretation whatsoever for its
   arguments.  Zero bytes may appear in the compiled regular expression.  */

typedef enum
{
  no_op = 0,

  /* Succeed right away--no more backtracking.	*/
  succeed,

	/* Followed by one byte giving n, then by n literal bytes.  */
  exactn,

	/* Matches any (more or less) character.  */
  anychar,

	/* Matches any one char belonging to specified set.  First
	   following byte is number of bitmap bytes.  Then come bytes
	   for a bitmap saying which chars are in.  Bits in each byte
	   are ordered low-bit-first.  A character is in the set if its
	   bit is 1.  A character too large to have a bit in the map is
	   automatically not in the set.  */
  charset,

	/* Same parameters as charset, but match any character that is
	   not one of those specified.	*/
  charset_not,

	/* Start remembering the text that is matched, for storing in a
	   register.  Followed by one byte with the register number, in
	   the range 0 to one less than the pattern buffer's re_nsub
	   field.  Then followed by one byte with the number of groups
	   inner to this one.  (This last has to be part of the
	   start_memory only because we need it in the on_failure_jump
	   of re_match_2.)  */
  start_memory,

	/* Stop remembering the text that is matched and store it in a
	   memory register.  Followed by one byte with the register
	   number, in the range 0 to one less than `re_nsub' in the
	   pattern buffer, and one byte with the number of inner groups,
	   just like `start_memory'.  (We need the number of inner
	   groups here because we don't have any easy way of finding the
	   corresponding start_memory when we're at a stop_memory.)  */
  stop_memory,

	/* Match a duplicate of something remembered. Followed by one
	   byte containing the register number.	 */
  duplicate,

	/* Fail unless at beginning of line.  */
  begline,

	/* Fail unless at end of line.	*/
  endline,

	/* Succeeds if at beginning of buffer (if emacs) or at beginning
	   of string to be matched (if not).  */
  begbuf,

	/* Analogously, for end of buffer/string.  */
  endbuf,

	/* Followed by two byte relative address to which to jump.  */
  jump,

	/* Same as jump, but marks the end of an alternative.  */
  jump_past_alt,

	/* Followed by two-byte relative address of place to resume at
	   in case of failure.	*/
  on_failure_jump,

	/* Like on_failure_jump, but pushes a placeholder instead of the
	   current string position when executed.  */
  on_failure_keep_string_jump,

	/* Throw away latest failure point and then jump to following
	   two-byte relative address.  */
  pop_failure_jump,

	/* Change to pop_failure_jump if know won't have to backtrack to
	   match; otherwise change to jump.  This is used to jump
	   back to the beginning of a repeat.  If what follows this jump
	   clearly won't match what the repeat does, such that we can be
	   sure that there is no use backtracking out of repetitions
	   already matched, then we change it to a pop_failure_jump.
	   Followed by two-byte address.  */
  maybe_pop_jump,

	/* Jump to following two-byte address, and push a dummy failure
	   point. This failure point will be thrown away if an attempt
	   is made to use it for a failure.  A `+' construct makes this
	   before the first repeat.  Also used as an intermediary kind
	   of jump when compiling an alternative.  */
  dummy_failure_jump,

	/* Push a dummy failure point and continue.  Used at the end of
	   alternatives.  */
  push_dummy_failure,

	/* Followed by two-byte relative address and two-byte number n.
	   After matching N times, jump to the address upon failure.  */
  succeed_n,

	/* Followed by two-byte relative address, and two-byte number n.
	   Jump to the address N times, then fail.  */
  jump_n,

	/* Set the following two-byte relative address to the
	   subsequent two-byte number.	The address *includes* the two
	   bytes of number.  */
  set_number_at,

  wordchar,	/* Matches any word-constituent character.  */
  notwordchar,	/* Matches any char that is not a word-constituent.  */

  wordbeg,	/* Succeeds if at word beginning.  */
  wordend,	/* Succeeds if at word end.  */

  wordbound,	/* Succeeds if at a word boundary.  */
  notwordbound	/* Succeeds if not at a word boundary.	*/

#ifdef emacs
  ,before_dot,	/* Succeeds if before point.  */
  at_dot,	/* Succeeds if at point.  */
  after_dot,	/* Succeeds if after point.  */

	/* Matches any character whose syntax is specified.  Followed by
	   a byte which contains a syntax code, e.g., Sword.  */
  syntaxspec,

	/* Matches any character whose syntax is not that specified.  */
  notsyntaxspec,

  /* Matches any character whose category-set contains the specified
     category.	The operator is followed by a byte which contains a
     category code (mnemonic ASCII character).	*/
  categoryspec,

  /* Matches any character whose category-set does not contain the
     specified category.  The operator is followed by a byte which
     contains the category code (mnemonic ASCII character).  */
  notcategoryspec
#endif /* emacs */
} re_opcode_t;

/* Common operations on the compiled pattern.  */

/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */

#define STORE_NUMBER(destination, number)				\
  do {									\
    (destination)[0] = (number) & 0377;					\
    (destination)[1] = (number) >> 8;					\
  } while (0)

/* Same as STORE_NUMBER, except increment DESTINATION to
   the byte after where the number is stored.  Therefore, DESTINATION
   must be an lvalue.  */

#define STORE_NUMBER_AND_INCR(destination, number)			\
  do {									\
    STORE_NUMBER (destination, number);					\
    (destination) += 2;							\
  } while (0)

/* Put into DESTINATION a number stored in two contiguous bytes starting
   at SOURCE.  */

#define EXTRACT_NUMBER(destination, source)				\
  do {									\
    (destination) = *(source) & 0377;					\
    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
  } while (0)

#ifdef DEBUG
static void
extract_number (dest, source)
    int *dest;
    unsigned char *source;
{
  int temp = SIGN_EXTEND_CHAR (*(source + 1));
  *dest = *source & 0377;
  *dest += temp << 8;
}

#ifndef EXTRACT_MACROS /* To debug the macros.	*/
#undef EXTRACT_NUMBER
#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
#endif /* not EXTRACT_MACROS */

#endif /* DEBUG */

/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
   SOURCE must be an lvalue.  */

#define EXTRACT_NUMBER_AND_INCR(destination, source)			\
  do {									\
    EXTRACT_NUMBER (destination, source);				\
    (source) += 2;							\
  } while (0)

#ifdef DEBUG
static void
extract_number_and_incr (destination, source)
    int *destination;
    unsigned char **source;
{
  extract_number (destination, *source);
  *source += 2;
}

#ifndef EXTRACT_MACROS
#undef EXTRACT_NUMBER_AND_INCR
#define EXTRACT_NUMBER_AND_INCR(dest, src) \
  extract_number_and_incr (&dest, &src)
#endif /* not EXTRACT_MACROS */

#endif /* DEBUG */

/* Store a multibyte character in three contiguous bytes starting
   DESTINATION, and increment DESTINATION to the byte after where the
   character is stored.	 Therefore, DESTINATION must be an lvalue.  */

#define STORE_CHARACTER_AND_INCR(destination, character)	\
  do {								\
    (destination)[0] = (character) & 0377;			\
    (destination)[1] = ((character) >> 8) & 0377;		\
    (destination)[2] = (character) >> 16;			\
    (destination) += 3;						\
  } while (0)

/* Put into DESTINATION a character stored in three contiguous bytes
   starting at SOURCE.	*/

#define EXTRACT_CHARACTER(destination, source)	\
  do {						\
    (destination) = ((source)[0]		\
		     | ((source)[1] << 8)	\
		     | ((source)[2] << 16));	\
  } while (0)


/* Macros for charset. */

/* Size of bitmap of charset P in bytes.  P is a start of charset,
   i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not.  */
#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)

/* Nonzero if charset P has range table.  */
#define CHARSET_RANGE_TABLE_EXISTS_P(p)	 ((p)[1] & 0x80)

/* Return the address of range table of charset P.  But not the start
   of table itself, but the before where the number of ranges is
   stored.  `2 +' means to skip re_opcode_t and size of bitmap.	 */
#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])

/* Test if C is listed in the bitmap of charset P.  */
#define CHARSET_LOOKUP_BITMAP(p, c)				\
  ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH			\
   && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))

/* Return the address of end of RANGE_TABLE.  COUNT is number of
   ranges (which is a pair of (start, end)) in the RANGE_TABLE.	 `* 2'
   is start of range and end of range.	`* 3' is size of each start
   and end.  */
#define CHARSET_RANGE_TABLE_END(range_table, count)	\
  ((range_table) + (count) * 2 * 3)

/* Test if C is in RANGE_TABLE.	 A flag NOT is negated if C is in.
   COUNT is number of ranges in RANGE_TABLE.  */
#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count)	\
  do									\
    {									\
      int range_start, range_end;					\
      unsigned char *p;							\
      unsigned char *range_table_end					\
	= CHARSET_RANGE_TABLE_END ((range_table), (count));		\
									\
      for (p = (range_table); p < range_table_end; p += 2 * 3)		\
	{								\
	  EXTRACT_CHARACTER (range_start, p);				\
	  EXTRACT_CHARACTER (range_end, p + 3);				\
									\
	  if (range_start <= (c) && (c) <= range_end)			\
	    {								\
	      (not) = !(not);						\
	      break;							\
	    }								\
	}								\
    }									\
  while (0)

/* Test if C is in range table of CHARSET.  The flag NOT is negated if
   C is listed in it.  */
#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset)			\
  do									\
    {									\
      /* Number of ranges in range table. */				\
      int count;							\
      unsigned char *range_table = CHARSET_RANGE_TABLE (charset);	\
									\
      EXTRACT_NUMBER_AND_INCR (count, range_table);			\
      CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count);	\
    }									\
  while (0)

/* If DEBUG is defined, Regex prints many voluminous messages about what
   it is doing (if the variable `debug' is nonzero).  If linked with the
   main program in `iregex.c', you can enter patterns and strings
   interactively.  And if linked with the main program in `main.c' and
   the other test files, you can run the already-written tests.	 */

#ifdef DEBUG

/* We use standard I/O for debugging.  */
#include <stdio.h>

/* It is useful to test things that ``must'' be true when debugging.  */
#include <assert.h>

static int debug = 0;

#define DEBUG_STATEMENT(e) e
#define DEBUG_PRINT1(x) if (debug) printf (x)
#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)				\
  if (debug) print_partial_compiled_pattern (s, e)
#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
  if (debug) print_double_string (w, s1, sz1, s2, sz2)


/* Print the fastmap in human-readable form.  */

void
print_fastmap (fastmap)
    char *fastmap;
{
  unsigned was_a_range = 0;
  unsigned i = 0;

  while (i < (1 << BYTEWIDTH))
    {
      if (fastmap[i++])
	{
	  was_a_range = 0;
	  putchar (i - 1);
	  while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
	    {
	      was_a_range = 1;
	      i++;
	    }
	  if (was_a_range)
	    {
	      printf ("-");
	      putchar (i - 1);
	    }
	}
    }
  putchar ('\n');
}


/* Print a compiled pattern string in human-readable form, starting at
   the START pointer into it and ending just before the pointer END.  */

void
print_partial_compiled_pattern (start, end)
    unsigned char *start;
    unsigned char *end;
{
  int mcnt, mcnt2;
  unsigned char *p = start;
  unsigned char *pend = end;

  if (start == NULL)
    {
      printf ("(null)\n");
      return;
    }

  /* Loop over pattern commands.  */
  while (p < pend)
    {
      printf ("%d:\t", p - start);

      switch ((re_opcode_t) *p++)
	{
	case no_op:
	  printf ("/no_op");
	  break;

	case exactn:
	  mcnt = *p++;
	  printf ("/exactn/%d", mcnt);
	  do
	    {
	      putchar ('/');
	      putchar (*p++);
	    }
	  while (--mcnt);
	  break;

	case start_memory:
	  mcnt = *p++;
	  printf ("/start_memory/%d/%d", mcnt, *p++);
	  break;

	case stop_memory:
	  mcnt = *p++;
	  printf ("/stop_memory/%d/%d", mcnt, *p++);
	  break;

	case duplicate:
	  printf ("/duplicate/%d", *p++);
	  break;

	case anychar:
	  printf ("/anychar");
	  break;

	case charset:
	case charset_not:
	  {
	    register int c, last = -100;
	    register int in_range = 0;

	    printf ("/charset [%s",
		    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");

	    assert (p + *p < pend);

	    for (c = 0; c < 256; c++)
	      if (c / 8 < *p
		  && (p[1 + (c/8)] & (1 << (c % 8))))
		{
		  /* Are we starting a range?  */
		  if (last + 1 == c && ! in_range)
		    {
		      putchar ('-');
		      in_range = 1;
		    }
		  /* Have we broken a range?  */
		  else if (last + 1 != c && in_range)
	      {
		      putchar (last);
		      in_range = 0;
		    }

		  if (! in_range)
		    putchar (c);

		  last = c;
	      }

	    if (in_range)
	      putchar (last);

	    putchar (']');

	    p += 1 + *p;
	  }
	  break;

	case begline:
	  printf ("/begline");
	  break;

	case endline:
	  printf ("/endline");
	  break;

	case on_failure_jump:
	  extract_number_and_incr (&mcnt, &p);
	  printf ("/on_failure_jump to %d", p + mcnt - start);
	  break;

	case on_failure_keep_string_jump:
	  extract_number_and_incr (&mcnt, &p);
	  printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
	  break;

	case dummy_failure_jump:
	  extract_number_and_incr (&mcnt, &p);
	  printf ("/dummy_failure_jump to %d", p + mcnt - start);
	  break;

	case push_dummy_failure:
	  printf ("/push_dummy_failure");
	  break;

	case maybe_pop_jump:
	  extract_number_and_incr (&mcnt, &p);
	  printf ("/maybe_pop_jump to %d", p + mcnt - start);
	  break;

	case pop_failure_jump:
	  extract_number_and_incr (&mcnt, &p);
	  printf ("/pop_failure_jump to %d", p + mcnt - start);
	  break;

	case jump_past_alt:
	  extract_number_and_incr (&mcnt, &p);
	  printf ("/jump_past_alt to %d", p + mcnt - start);
	  break;

	case jump:
	  extract_number_and_incr (&mcnt, &p);
	  printf ("/jump to %d", p + mcnt - start);
	  break;

	case succeed_n:
	  extract_number_and_incr (&mcnt, &p);
	  extract_number_and_incr (&mcnt2, &p);
	  printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
	  break;

	case jump_n:
	  extract_number_and_incr (&mcnt, &p);
	  extract_number_and_incr (&mcnt2, &p);
	  printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
	  break;

	case set_number_at:
	  extract_number_and_incr (&mcnt, &p);
	  extract_number_and_incr (&mcnt2, &p);
	  printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
	  break;

	case wordbound:
	  printf ("/wordbound");
	  break;

	case notwordbound:
	  printf ("/notwordbound");
	  break;

	case wordbeg:
	  printf ("/wordbeg");
	  break;

	case wordend:
	  printf ("/wordend");

#ifdef emacs
	case before_dot:
	  printf ("/before_dot");
	  break;

	case at_dot:
	  printf ("/at_dot");
	  break;

	case after_dot:
	  printf ("/after_dot");
	  break;

	case syntaxspec:
	  printf ("/syntaxspec");
	  mcnt = *p++;
	  printf ("/%d", mcnt);
	  break;

	case notsyntaxspec:
	  printf ("/notsyntaxspec");
	  mcnt = *p++;
	  printf ("/%d", mcnt);
	  break;
#endif /* emacs */

	case wordchar:
	  printf ("/wordchar");
	  break;

	case notwordchar:
	  printf ("/notwordchar");
	  break;

	case begbuf:
	  printf ("/begbuf");
	  break;

	case endbuf:
	  printf ("/endbuf");
	  break;

	default:
	  printf ("?%d", *(p-1));
	}

      putchar ('\n');
    }

  printf ("%d:\tend of pattern.\n", p - start);
}


void
print_compiled_pattern (bufp)
    struct re_pattern_buffer *bufp;
{
  unsigned char *buffer = bufp->buffer;

  print_partial_compiled_pattern (buffer, buffer + bufp->used);
  printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);

  if (bufp->fastmap_accurate && bufp->fastmap)
    {
      printf ("fastmap: ");
      print_fastmap (bufp->fastmap);
    }

  printf ("re_nsub: %d\t", bufp->re_nsub);
  printf ("regs_alloc: %d\t", bufp->regs_allocated);
  printf ("can_be_null: %d\t", bufp->can_be_null);
  printf ("newline_anchor: %d\n", bufp->newline_anchor);
  printf ("no_sub: %d\t", bufp->no_sub);
  printf ("not_bol: %d\t", bufp->not_bol);
  printf ("not_eol: %d\t", bufp->not_eol);
  printf ("syntax: %d\n", bufp->syntax);
  /* Perhaps we should print the translate table?  */
}


void
print_double_string (where, string1, size1, string2, size2)
    const char *where;
    const char *string1;
    const char *string2;
    int size1;
    int size2;
{
  unsigned this_char;

  if (where == NULL)
    printf ("(null)");
  else
    {
      if (FIRST_STRING_P (where))
	{
	  for (this_char = where - string1; this_char < size1; this_char++)
	    putchar (string1[this_char]);

	  where = string2;
	}

      for (this_char = where - string2; this_char < size2; this_char++)
	putchar (string2[this_char]);
    }
}

#else /* not DEBUG */

#undef assert
#define assert(e)

#define DEBUG_STATEMENT(e)
#define DEBUG_PRINT1(x)
#define DEBUG_PRINT2(x1, x2)
#define DEBUG_PRINT3(x1, x2, x3)
#define DEBUG_PRINT4(x1, x2, x3, x4)
#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)

#endif /* not DEBUG */

/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
   also be assigned to arbitrarily: each pattern buffer stores its own
   syntax, so it can be changed between regex compilations.  */
/* This has no initializer because initialized variables in Emacs
   become read-only after dumping.  */
reg_syntax_t re_syntax_options;


/* Specify the precise syntax of regexps for compilation.  This provides
   for compatibility for various utilities which historically have
   different, incompatible syntaxes.

   The argument SYNTAX is a bit mask comprised of the various bits
   defined in regex.h.	We return the old syntax.  */

reg_syntax_t
re_set_syntax (syntax)
    reg_syntax_t syntax;
{
  reg_syntax_t ret = re_syntax_options;

  re_syntax_options = syntax;
  return ret;
}

/* This table gives an error message for each of the error codes listed
   in regex.h.	Obviously the order here has to be same as there.
   POSIX doesn't require that we do anything for REG_NOERROR,
   but why not be nice?	 */

static const char *re_error_msgid[] =
  {
    gettext_noop ("Success"),	/* REG_NOERROR */
    gettext_noop ("No match"),	/* REG_NOMATCH */
    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
    gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
    gettext_noop ("Invalid range end"),	/* REG_ERANGE */
    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
  };

/* Avoiding alloca during matching, to placate r_alloc.	 */

/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
   searching and matching functions should not call alloca.  On some
   systems, alloca is implemented in terms of malloc, and if we're
   using the relocating allocator routines, then malloc could cause a
   relocation, which might (if the strings being searched are in the
   ralloc heap) shift the data out from underneath the regexp
   routines.

   Here's another reason to avoid allocation: Emacs
   processes input from X in a signal handler; processing X input may
   call malloc; if input arrives while a matching routine is calling
   malloc, then we're scrod.  But Emacs can't just block input while
   calling matching routines; then we don't notice interrupts when
   they come in.  So, Emacs blocks input around all regexp calls
   except the matching calls, which it leaves unprotected, in the
   faith that they will not malloc.  */

/* Normally, this is fine.  */
#define MATCH_MAY_ALLOCATE

/* When using GNU C, we are not REALLY using the C alloca, no matter
   what config.h may say.  So don't take precautions for it.  */
#ifdef __GNUC__
#undef C_ALLOCA
#endif

/* The match routines may not allocate if (1) they would do it with malloc
   and (2) it's not safe for them to use malloc.
   Note that if REL_ALLOC is defined, matching would not use malloc for the
   failure stack, but we would still use it for the register vectors;
   so REL_ALLOC should not affect this.	 */
#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
#undef MATCH_MAY_ALLOCATE
#endif


/* Failure stack declarations and macros; both re_compile_fastmap and
   re_match_2 use a failure stack.  These have to be macros because of
   REGEX_ALLOCATE_STACK.  */


/* Approximate number of failure points for which to initially allocate space
   when matching.  If this number is exceeded, we allocate more
   space, so it is not a hard limit.  */
#ifndef INIT_FAILURE_ALLOC
#define INIT_FAILURE_ALLOC 20
#endif

/* Roughly the maximum number of failure points on the stack.  Would be
   exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
   This is a variable only so users of regex can assign to it; we never
   change it ourselves.	 */
#if defined (MATCH_MAY_ALLOCATE)
/* Note that 4400 is enough to cause a crash on Alpha OSF/1,
   whose default stack limit is 2mb.  In order for a larger
   value to work reliably, you have to try to make it accord
   with the process stack limit.  */
int re_max_failures = 40000;
#else
int re_max_failures = 4000;
#endif

union fail_stack_elt
{
  unsigned char *pointer;
  int integer;
};

typedef union fail_stack_elt fail_stack_elt_t;

typedef struct
{
  fail_stack_elt_t *stack;
  unsigned size;
  unsigned avail;			/* Offset of next open position.  */
} fail_stack_type;

#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)


/* Define macros to initialize and free the failure stack.
   Do `return -2' if the alloc fails.  */

#ifdef MATCH_MAY_ALLOCATE
#define INIT_FAIL_STACK()						\
  do {									\
    fail_stack.stack = (fail_stack_elt_t *)				\
      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE	\
			    * sizeof (fail_stack_elt_t));		\
									\
    if (fail_stack.stack == NULL)					\
      return -2;							\
									\
    fail_stack.size = INIT_FAILURE_ALLOC;				\
    fail_stack.avail = 0;						\
  } while (0)

#define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
#else
#define INIT_FAIL_STACK()						\
  do {									\
    fail_stack.avail = 0;						\
  } while (0)

#define RESET_FAIL_STACK()
#endif


/* Double the size of FAIL_STACK, up to a limit
   which allows approximately `re_max_failures' items.

   Return 1 if succeeds, and 0 if either ran out of memory
   allocating space for it or it was already too large.

   REGEX_REALLOCATE_STACK requires `destination' be declared.	*/

/* Factor to increase the failure stack size by
   when we increase it.
   This used to be 2, but 2 was too wasteful
   because the old discarded stacks added up to as much space
   were as ultimate, maximum-size stack.  */
#define FAIL_STACK_GROWTH_FACTOR 4

#define GROW_FAIL_STACK(fail_stack)					\
  (((fail_stack).size * sizeof (fail_stack_elt_t)			\
    >= re_max_failures * TYPICAL_FAILURE_SIZE)				\
   ? 0									\
   : ((fail_stack).stack						\
      = (fail_stack_elt_t *)						\
	REGEX_REALLOCATE_STACK ((fail_stack).stack,			\
	  (fail_stack).size * sizeof (fail_stack_elt_t),		\
	  MIN (re_max_failures * TYPICAL_FAILURE_SIZE,			\
	       ((fail_stack).size * sizeof (fail_stack_elt_t)		\
		* FAIL_STACK_GROWTH_FACTOR))),				\
									\
      (fail_stack).stack == NULL					\
      ? 0								\
      : ((fail_stack).size						\
	 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE,		\
		 ((fail_stack).size * sizeof (fail_stack_elt_t)		\
		  * FAIL_STACK_GROWTH_FACTOR))				\
	    / sizeof (fail_stack_elt_t)),				\
	 1)))


/* Push pointer POINTER on FAIL_STACK.
   Return 1 if was able to do so and 0 if ran out of memory allocating
   space to do so.  */
#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
  ((FAIL_STACK_FULL ()							\
    && !GROW_FAIL_STACK (FAIL_STACK))					\
   ? 0									\
   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
      1))

/* Push a pointer value onto the failure stack.
   Assumes the variable `fail_stack'.  Probably should only
   be called from within `PUSH_FAILURE_POINT'.	*/
#define PUSH_FAILURE_POINTER(item)					\
  fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)

/* This pushes an integer-valued item onto the failure stack.
   Assumes the variable `fail_stack'.  Probably should only
   be called from within `PUSH_FAILURE_POINT'.	*/
#define PUSH_FAILURE_INT(item)					\
  fail_stack.stack[fail_stack.avail++].integer = (item)

/* Push a fail_stack_elt_t value onto the failure stack.
   Assumes the variable `fail_stack'.  Probably should only
   be called from within `PUSH_FAILURE_POINT'.	*/
#define PUSH_FAILURE_ELT(item)					\
  fail_stack.stack[fail_stack.avail++] =  (item)

/* These three POP... operations complement the three PUSH... operations.
   All assume that `fail_stack' is nonempty.  */
#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]

/* Used to omit pushing failure point id's when we're not debugging.  */
#ifdef DEBUG
#define DEBUG_PUSH PUSH_FAILURE_INT
#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
#else
#define DEBUG_PUSH(item)
#define DEBUG_POP(item_addr)
#endif


/* Push the information about the state we will need
   if we ever fail back to it.

   Requires variables fail_stack, regstart, regend, reg_info, and
   num_regs be declared.  GROW_FAIL_STACK requires `destination' be
   declared.

   Does `return FAILURE_CODE' if runs out of memory.  */

#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
  do {									\
    char *destination;							\
    /* Must be int, so when we don't save any registers, the arithmetic	\
       of 0 + -1 isn't done as unsigned.  */				\
    int this_reg;							\
									\
    DEBUG_STATEMENT (failure_id++);					\
    DEBUG_STATEMENT (nfailure_points_pushed++);				\
    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
    DEBUG_PRINT2 ("			size: %d\n", (fail_stack).size);\
									\
    DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
    DEBUG_PRINT2 ("	available: %d\n", REMAINING_AVAIL_SLOTS);	\
									\
    /* Ensure we have enough space allocated for what we will push.  */	\
    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
      {									\
	if (!GROW_FAIL_STACK (fail_stack))				\
	  return failure_code;						\
									\
	DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
		       (fail_stack).size);				\
	DEBUG_PRINT2 ("	 slots available: %d\n", REMAINING_AVAIL_SLOTS);\
      }									\
									\
    /* Push the info, starting with the registers.  */			\
    DEBUG_PRINT1 ("\n");						\
									\
    if (1)								\
      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
	   this_reg++)							\
	{								\
	  DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);		\
	  DEBUG_STATEMENT (num_regs_pushed++);				\
									\
	  DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);	\
	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
									\
	  DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
									\
	  DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
	  DEBUG_PRINT2 (" match_null=%d",				\
			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
	  DEBUG_PRINT2 (" matched_something=%d",			\
			MATCHED_SOMETHING (reg_info[this_reg]));	\
	  DEBUG_PRINT2 (" ever_matched=%d",				\
			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
	  DEBUG_PRINT1 ("\n");						\
	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
	}								\
									\
    DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
    PUSH_FAILURE_INT (lowest_active_reg);				\
									\
    DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
    PUSH_FAILURE_INT (highest_active_reg);				\
									\
    DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
    PUSH_FAILURE_POINTER (pattern_place);				\
									\
    DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,	\
				 size2);				\
    DEBUG_PRINT1 ("'\n");						\
    PUSH_FAILURE_POINTER (string_place);				\
									\
    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
    DEBUG_PUSH (failure_id);						\
  } while (0)

/* This is the number of items that are pushed and popped on the stack
   for each register.  */
#define NUM_REG_ITEMS  3

/* Individual items aside from the registers.  */
#ifdef DEBUG
#define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
#else
#define NUM_NONREG_ITEMS 4
#endif

/* Estimate the size of data pushed by a typical failure stack entry.
   An estimate is all we need, because all we use this for
   is to choose a limit for how big to make the failure stack.  */

#define TYPICAL_FAILURE_SIZE 20

/* This is how many items we actually use for a failure point.
   It depends on the regexp.  */
#define NUM_FAILURE_ITEMS				\
  (((0							\
     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
    * NUM_REG_ITEMS)					\
   + NUM_NONREG_ITEMS)

/* How many items can still be added to the stack without overflowing it.  */
#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)


/* Pops what PUSH_FAIL_STACK pushes.

   We restore into the parameters, all of which should be lvalues:
     STR -- the saved data position.
     PAT -- the saved pattern position.
     LOW_REG, HIGH_REG -- the highest and lowest active registers.
     REGSTART, REGEND -- arrays of string positions.
     REG_INFO -- array of information about each subexpression.

   Also assumes the variables `fail_stack' and (if debugging), `bufp',
   `pend', `string1', `size1', `string2', and `size2'.	*/

#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
{									\
  DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
  int this_reg;								\
  const unsigned char *string_temp;					\
									\
  assert (!FAIL_STACK_EMPTY ());					\
									\
  /* Remove failure points and point to how many regs pushed.  */	\
  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
  DEBUG_PRINT2 ("		     size: %d\n", fail_stack.size);	\
									\
  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
									\
  DEBUG_POP (&failure_id);						\
  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
									\
  /* If the saved string location is NULL, it came from an		\
     on_failure_keep_string_jump opcode, and we want to throw away the	\
     saved NULL, thus retaining our current position in the string.  */	\
  string_temp = POP_FAILURE_POINTER ();					\
  if (string_temp != NULL)						\
    str = (const char *) string_temp;					\
									\
  DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
  DEBUG_PRINT1 ("'\n");							\
									\
  pat = (unsigned char *) POP_FAILURE_POINTER ();			\
  DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
									\
  /* Restore register info.  */						\
  high_reg = (unsigned) POP_FAILURE_INT ();				\
  DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
									\
  low_reg = (unsigned) POP_FAILURE_INT ();				\
  DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
									\
  if (1)								\
    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
      {									\
	DEBUG_PRINT2 ("	   Popping reg: %d\n", this_reg);		\
									\
	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
	DEBUG_PRINT2 ("	     info: 0x%x\n", reg_info[this_reg]);	\
									\
	regend[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
	DEBUG_PRINT2 ("	     end: 0x%x\n", regend[this_reg]);		\
									\
	regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
	DEBUG_PRINT2 ("	     start: 0x%x\n", regstart[this_reg]);	\
      }									\
  else									\
    {									\
      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
	{								\
	  reg_info[this_reg].word.integer = 0;				\
	  regend[this_reg] = 0;						\
	  regstart[this_reg] = 0;					\
	}								\
      highest_active_reg = high_reg;					\
    }									\
									\
  set_regs_matched_done = 0;						\
  DEBUG_STATEMENT (nfailure_points_popped++);				\
} /* POP_FAILURE_POINT */



/* Structure for per-register (a.k.a. per-group) information.
   Other register information, such as the
   starting and ending positions (which are addresses), and the list of
   inner groups (which is a bits list) are maintained in separate
   variables.

   We are making a (strictly speaking) nonportable assumption here: that
   the compiler will pack our bit fields into something that fits into
   the type of `word', i.e., is something that fits into one item on the
   failure stack.  */

typedef union
{
  fail_stack_elt_t word;
  struct
  {
      /* This field is one if this group can match the empty string,
	 zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
#define MATCH_NULL_UNSET_VALUE 3
    unsigned match_null_string_p : 2;
    unsigned is_active : 1;
    unsigned matched_something : 1;
    unsigned ever_matched_something : 1;
  } bits;
} register_info_type;

#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
#define IS_ACTIVE(R)  ((R).bits.is_active)
#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)


/* Call this when have matched a real character; it sets `matched' flags
   for the subexpressions which we are currently inside.  Also records
   that those subexprs have matched.  */
#define SET_REGS_MATCHED()						\
  do									\
    {									\
      if (!set_regs_matched_done)					\
	{								\
	  unsigned r;							\
	  set_regs_matched_done = 1;					\
	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
	    {								\
	      MATCHED_SOMETHING (reg_info[r])				\
		= EVER_MATCHED_SOMETHING (reg_info[r])			\
		= 1;							\
	    }								\
	}								\
    }									\
  while (0)

/* Registers are set to a sentinel when they haven't yet matched.  */
static char reg_unset_dummy;
#define REG_UNSET_VALUE (&reg_unset_dummy)
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)

/* Subroutine declarations and macros for regex_compile.  */

static void store_op1 (), store_op2 ();
static void insert_op1 (), insert_op2 ();
static boolean at_begline_loc_p (), at_endline_loc_p ();
static boolean group_in_compile_stack ();
static reg_errcode_t compile_range ();

/* Fetch the next character in the uncompiled pattern---translating it
   if necessary.  Also cast from a signed character in the constant
   string passed to us by the user to an unsigned char that we can use
   as an array index (in, e.g., `translate').  */
#ifndef PATFETCH
#define PATFETCH(c)							\
  do {if (p == pend) return REG_EEND;					\
    c = (unsigned char) *p++;						\
    if (RE_TRANSLATE_P (translate)) c = RE_TRANSLATE (translate, c);	\
  } while (0)
#endif

/* Fetch the next character in the uncompiled pattern, with no
   translation.	 */
#define PATFETCH_RAW(c)							\
  do {if (p == pend) return REG_EEND;					\
    c = (unsigned char) *p++;						\
  } while (0)

/* Go backwards one character in the pattern.  */
#define PATUNFETCH p--


/* If `translate' is non-null, return translate[D], else just D.  We
   cast the subscript to translate because some data is declared as
   `char *', to avoid warnings when a string constant is passed.  But
   when we use a character as a subscript we must make it unsigned.  */
#ifndef TRANSLATE
#define TRANSLATE(d) \
  (RE_TRANSLATE_P (translate) \
   ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d)) : (d))
#endif


/* Macros for outputting the compiled pattern into `buffer'.  */

/* If the buffer isn't allocated when it comes in, use this.  */
#define INIT_BUF_SIZE  32

/* Make sure we have at least N more bytes of space in buffer.	*/
#define GET_BUFFER_SPACE(n)						\
    while (b - bufp->buffer + (n) > bufp->allocated)			\
      EXTEND_BUFFER ()

/* Make sure we have one more byte of buffer space and then add C to it.  */
#define BUF_PUSH(c)							\
  do {									\
    GET_BUFFER_SPACE (1);						\
    *b++ = (unsigned char) (c);						\
  } while (0)


/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
#define BUF_PUSH_2(c1, c2)						\
  do {									\
    GET_BUFFER_SPACE (2);						\
    *b++ = (unsigned char) (c1);					\
    *b++ = (unsigned char) (c2);					\
  } while (0)


/* As with BUF_PUSH_2, except for three bytes.	*/
#define BUF_PUSH_3(c1, c2, c3)						\
  do {									\
    GET_BUFFER_SPACE (3);						\
    *b++ = (unsigned char) (c1);					\
    *b++ = (unsigned char) (c2);					\
    *b++ = (unsigned char) (c3);					\
  } while (0)


/* Store a jump with opcode OP at LOC to location TO.  We store a
   relative address offset by the three bytes the jump itself occupies.	 */
#define STORE_JUMP(op, loc, to) \
  store_op1 (op, loc, (to) - (loc) - 3)

/* Likewise, for a two-argument jump.  */
#define STORE_JUMP2(op, loc, to, arg) \
  store_op2 (op, loc, (to) - (loc) - 3, arg)

/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.	 */
#define INSERT_JUMP(op, loc, to) \
  insert_op1 (op, loc, (to) - (loc) - 3, b)

/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
#define INSERT_JUMP2(op, loc, to, arg) \
  insert_op2 (op, loc, (to) - (loc) - 3, arg, b)


/* This is not an arbitrary limit: the arguments which represent offsets
   into the pattern are two bytes long.	 So if 2^16 bytes turns out to
   be too small, many things would have to change.  */
#define MAX_BUF_SIZE (1L << 16)


/* Extend the buffer by twice its current size via realloc and
   reset the pointers that pointed into the old block to point to the
   correct places in the new one.  If extending the buffer results in it
   being larger than MAX_BUF_SIZE, then flag memory exhausted.	*/
#define EXTEND_BUFFER()							\
  do {									\
    unsigned char *old_buffer = bufp->buffer;				\
    if (bufp->allocated == MAX_BUF_SIZE)				\
      return REG_ESIZE;							\
    bufp->allocated <<= 1;						\
    if (bufp->allocated > MAX_BUF_SIZE)					\
      bufp->allocated = MAX_BUF_SIZE;					\
    bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
    if (bufp->buffer == NULL)						\
      return REG_ESPACE;						\
    /* If the buffer moved, move all the pointers into it.  */		\
    if (old_buffer != bufp->buffer)					\
      {									\
	b = (b - old_buffer) + bufp->buffer;				\
	begalt = (begalt - old_buffer) + bufp->buffer;			\
	if (fixup_alt_jump)						\
	  fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
	if (laststart)							\
	  laststart = (laststart - old_buffer) + bufp->buffer;		\
	if (pending_exact)						\
	  pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
      }									\
  } while (0)


/* Since we have one byte reserved for the register number argument to
   {start,stop}_memory, the maximum number of groups we can report
   things about is what fits in that byte.  */
#define MAX_REGNUM 255

/* But patterns can have more than `MAX_REGNUM' registers.  We just
   ignore the excess.  */
typedef unsigned regnum_t;


/* Macros for the compile stack.  */

/* Since offsets can go either forwards or backwards, this type needs to
   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.	 */
typedef int pattern_offset_t;

typedef struct
{
  pattern_offset_t begalt_offset;
  pattern_offset_t fixup_alt_jump;
  pattern_offset_t inner_group_offset;
  pattern_offset_t laststart_offset;
  regnum_t regnum;
} compile_stack_elt_t;


typedef struct
{
  compile_stack_elt_t *stack;
  unsigned size;
  unsigned avail;			/* Offset of next open position.  */
} compile_stack_type;


#define INIT_COMPILE_STACK_SIZE 32

#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)

/* The next available element.	*/
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])


/* Structure to manage work area for range table.  */
struct range_table_work_area
{
  int *table;			/* actual work area.  */
  int allocated;		/* allocated size for work area in bytes.  */
  int used;			/* actually used size in words.	 */
};

/* Make sure that WORK_AREA can hold more N multibyte characters.  */
#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n)			  \
  do {									  \
    if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated)  \
      {									  \
	(work_area).allocated += 16 * sizeof (int);			  \
	if ((work_area).table)						  \
	  (work_area).table						  \
	    = (int *) realloc ((work_area).table, (work_area).allocated); \
	else								  \
	  (work_area).table						  \
	    = (int *) malloc ((work_area).allocated);			  \
	if ((work_area).table == 0)					  \
	  FREE_STACK_RETURN (REG_ESPACE);				  \
      }									  \
  } while (0)

/* Set a range (RANGE_START, RANGE_END) to WORK_AREA.  */
#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end)	\
  do {									\
    EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2);			\
    (work_area).table[(work_area).used++] = (range_start);		\
    (work_area).table[(work_area).used++] = (range_end);		\
  } while (0)

/* Free allocated memory for WORK_AREA.	 */
#define FREE_RANGE_TABLE_WORK_AREA(work_area)	\
  do {						\
    if ((work_area).table)			\
      free ((work_area).table);			\
  } while (0)

#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])


/* Set the bit for character C in a list.  */
#define SET_LIST_BIT(c)				      \
  (b[((unsigned char) (c)) / BYTEWIDTH]		      \
   |= 1 << (((unsigned char) c) % BYTEWIDTH))


/* Get the next unsigned number in the uncompiled pattern.  */
#define GET_UNSIGNED_NUMBER(num)					\
  { if (p != pend)							\
     {									\
       PATFETCH (c);							\
       while (ISDIGIT (c))						\
	 {								\
	   if (num < 0)							\
	      num = 0;							\
	   num = num * 10 + c - '0';					\
	   if (p == pend)						\
	      break;							\
	   PATFETCH (c);						\
	 }								\
       }								\
    }

#define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */

#define IS_CHAR_CLASS(string)						\
   (STREQ (string, "alpha") || STREQ (string, "upper")			\
    || STREQ (string, "lower") || STREQ (string, "digit")		\
    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
    || STREQ (string, "space") || STREQ (string, "print")		\
    || STREQ (string, "punct") || STREQ (string, "graph")		\
    || STREQ (string, "cntrl") || STREQ (string, "blank"))

#ifndef MATCH_MAY_ALLOCATE

/* If we cannot allocate large objects within re_match_2_internal,
   we make the fail stack and register vectors global.
   The fail stack, we grow to the maximum size when a regexp
   is compiled.
   The register vectors, we adjust in size each time we
   compile a regexp, according to the number of registers it needs.  */

static fail_stack_type fail_stack;

/* Size with which the following vectors are currently allocated.
   That is so we can make them bigger as needed,
   but never make them smaller.	 */
static int regs_allocated_size;

static const char **	 regstart, **	  regend;
static const char ** old_regstart, ** old_regend;
static const char **best_regstart, **best_regend;
static register_info_type *reg_info;
static const char **reg_dummy;
static register_info_type *reg_info_dummy;

/* Make the register vectors big enough for NUM_REGS registers,
   but don't make them smaller.	 */

static
regex_grow_registers (num_regs)
     int num_regs;
{
  if (num_regs > regs_allocated_size)
    {
      RETALLOC_IF (regstart,	 num_regs, const char *);
      RETALLOC_IF (regend,	 num_regs, const char *);
      RETALLOC_IF (old_regstart, num_regs, const char *);
      RETALLOC_IF (old_regend,	 num_regs, const char *);
      RETALLOC_IF (best_regstart, num_regs, const char *);
      RETALLOC_IF (best_regend,	 num_regs, const char *);
      RETALLOC_IF (reg_info,	 num_regs, register_info_type);
      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);

      regs_allocated_size = num_regs;
    }
}

#endif /* not MATCH_MAY_ALLOCATE */

/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
   Returns one of error codes defined in `regex.h', or zero for success.

   Assumes the `allocated' (and perhaps `buffer') and `translate'
   fields are set in BUFP on entry.

   If it succeeds, results are put in BUFP (if it returns an error, the
   contents of BUFP are undefined):
     `buffer' is the compiled pattern;
     `syntax' is set to SYNTAX;
     `used' is set to the length of the compiled pattern;
     `fastmap_accurate' is zero;
     `re_nsub' is the number of subexpressions in PATTERN;
     `not_bol' and `not_eol' are zero;

   The `fastmap' and `newline_anchor' fields are neither
   examined nor set.  */

/* Return, freeing storage we allocated.  */
#define FREE_STACK_RETURN(value)		\
  do {							\
    FREE_RANGE_TABLE_WORK_AREA (range_table_work);	\
    free (compile_stack.stack);				\
    return value;					\
  } while (0)

static reg_errcode_t
regex_compile (pattern, size, syntax, bufp)
     const char *pattern;
     int size;
     reg_syntax_t syntax;
     struct re_pattern_buffer *bufp;
{
  /* We fetch characters from PATTERN here.  Even though PATTERN is
     `char *' (i.e., signed), we declare these variables as unsigned, so
     they can be reliably used as array indices.  */
  register unsigned int c, c1;

  /* A random temporary spot in PATTERN.  */
  const char *p1;

  /* Points to the end of the buffer, where we should append.  */
  register unsigned char *b;

  /* Keeps track of unclosed groups.  */
  compile_stack_type compile_stack;

  /* Points to the current (ending) position in the pattern.  */
#ifdef AIX
  /* `const' makes AIX compiler fail.  */
  char *p = pattern;
#else
  const char *p = pattern;
#endif
  const char *pend = pattern + size;

  /* How to translate the characters in the pattern.  */
  RE_TRANSLATE_TYPE translate = bufp->translate;

  /* Address of the count-byte of the most recently inserted `exactn'
     command.  This makes it possible to tell if a new exact-match
     character can be added to that command or if the character requires
     a new `exactn' command.  */
  unsigned char *pending_exact = 0;

  /* Address of start of the most recently finished expression.
     This tells, e.g., postfix * where to find the start of its
     operand.  Reset at the beginning of groups and alternatives.  */
  unsigned char *laststart = 0;

  /* Address of beginning of regexp, or inside of last group.  */
  unsigned char *begalt;

  /* Place in the uncompiled pattern (i.e., the {) to
     which to go back if the interval is invalid.  */
  const char *beg_interval;

  /* Address of the place where a forward jump should go to the end of
     the containing expression.	 Each alternative of an `or' -- except the
     last -- ends with a forward jump of this sort.  */
  unsigned char *fixup_alt_jump = 0;

  /* Counts open-groups as they are encountered.  Remembered for the
     matching close-group on the compile stack, so the same register
     number is put in the stop_memory as the start_memory.  */
  regnum_t regnum = 0;

  /* Work area for range table of charset.  */
  struct range_table_work_area range_table_work;

#ifdef DEBUG
  DEBUG_PRINT1 ("\nCompiling pattern: ");
  if (debug)
    {
      unsigned debug_count;

      for (debug_count = 0; debug_count < size; debug_count++)
	putchar (pattern[debug_count]);
      putchar ('\n');
    }
#endif /* DEBUG */

  /* Initialize the compile stack.  */
  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
  if (compile_stack.stack == NULL)
    return REG_ESPACE;

  compile_stack.size = INIT_COMPILE_STACK_SIZE;
  compile_stack.avail = 0;

  range_table_work.table = 0;
  range_table_work.allocated = 0;

  /* Initialize the pattern buffer.  */
  bufp->syntax = syntax;
  bufp->fastmap_accurate = 0;
  bufp->not_bol = bufp->not_eol = 0;

  /* Set `used' to zero, so that if we return an error, the pattern
     printer (for debugging) will think there's no pattern.  We reset it
     at the end.  */
  bufp->used = 0;

  /* Always count groups, whether or not bufp->no_sub is set.  */
  bufp->re_nsub = 0;

#ifdef emacs
  /* bufp->multibyte is set before regex_compile is called, so don't alter
     it. */
#else  /* not emacs */
  /* Nothing is recognized as a multibyte character.  */
  bufp->multibyte = 0;
#endif

#if !defined (emacs) && !defined (SYNTAX_TABLE)
  /* Initialize the syntax table.  */
   init_syntax_once ();
#endif

  if (bufp->allocated == 0)
    {
      if (bufp->buffer)
	{ /* If zero allocated, but buffer is non-null, try to realloc
	     enough space.  This loses if buffer's address is bogus, but
	     that is the user's responsibility.	 */
	  RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
	}
      else
	{ /* Caller did not allocate a buffer.	Do it for them.	 */
	  bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
	}
      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);

      bufp->allocated = INIT_BUF_SIZE;
    }

  begalt = b = bufp->buffer;

  /* Loop through the uncompiled pattern until we're at the end.  */
  while (p != pend)
    {
      PATFETCH (c);

      switch (c)
	{
	case '^':
	  {
	    if (   /* If at start of pattern, it's an operator.	 */
		   p == pattern + 1
		   /* If context independent, it's an operator.	 */
		|| syntax & RE_CONTEXT_INDEP_ANCHORS
		   /* Otherwise, depends on what's come before.	 */
		|| at_begline_loc_p (pattern, p, syntax))
	      BUF_PUSH (begline);
	    else
	      goto normal_char;
	  }
	  break;


	case '$':
	  {
	    if (   /* If at end of pattern, it's an operator.  */
		   p == pend
		   /* If context independent, it's an operator.	 */
		|| syntax & RE_CONTEXT_INDEP_ANCHORS
		   /* Otherwise, depends on what's next.  */
		|| at_endline_loc_p (p, pend, syntax))
	       BUF_PUSH (endline);
	     else
	       goto normal_char;
	   }
	   break;


	case '+':
	case '?':
	  if ((syntax & RE_BK_PLUS_QM)
	      || (syntax & RE_LIMITED_OPS))
	    goto normal_char;
	handle_plus:
	case '*':
	  /* If there is no previous pattern... */
	  if (!laststart)
	    {
	      if (syntax & RE_CONTEXT_INVALID_OPS)
		FREE_STACK_RETURN (REG_BADRPT);
	      else if (!(syntax & RE_CONTEXT_INDEP_OPS))
		goto normal_char;
	    }

	  {
	    /* Are we optimizing this jump?  */
	    boolean keep_string_p = false;

	    /* 1 means zero (many) matches is allowed.	*/
	    char zero_times_ok = 0, many_times_ok = 0;

	    /* If there is a sequence of repetition chars, collapse it
	       down to just one (the right one).  We can't combine
	       interval operators with these because of, e.g., `a{2}*',
	       which should only match an even number of `a's.	*/

	    for (;;)
	      {
		zero_times_ok |= c != '+';
		many_times_ok |= c != '?';

		if (p == pend)
		  break;

		PATFETCH (c);

		if (c == '*'
		    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
		  ;

		else if (syntax & RE_BK_PLUS_QM	 &&  c == '\\')
		  {
		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);

		    PATFETCH (c1);
		    if (!(c1 == '+' || c1 == '?'))
		      {
			PATUNFETCH;
			PATUNFETCH;
			break;
		      }

		    c = c1;
		  }
		else
		  {
		    PATUNFETCH;
		    break;
		  }

		/* If we get here, we found another repeat character.  */
	       }

	    /* Star, etc. applied to an empty pattern is equivalent
	       to an empty pattern.  */
	    if (!laststart)
	      break;

	    /* Now we know whether or not zero matches is allowed
	       and also whether or not two or more matches is allowed.	*/
	    if (many_times_ok)
	      { /* More than one repetition is allowed, so put in at the
		   end a backward relative jump from `b' to before the next
		   jump we're going to put in below (which jumps from
		   laststart to after this jump).

		   But if we are at the `*' in the exact sequence `.*\n',
		   insert an unconditional jump backwards to the .,
		   instead of the beginning of the loop.  This way we only
		   push a failure point once, instead of every time
		   through the loop.  */
		assert (p - 1 > pattern);

		/* Allocate the space for the jump.  */
		GET_BUFFER_SPACE (3);

		/* We know we are not at the first character of the pattern,
		   because laststart was nonzero.  And we've already
		   incremented `p', by the way, to be the character after
		   the `*'.  Do we have to do something analogous here
		   for null bytes, because of RE_DOT_NOT_NULL?	*/
		if (TRANSLATE ((unsigned char)*(p - 2)) == TRANSLATE ('.')
		    && zero_times_ok
		    && p < pend
		    && TRANSLATE ((unsigned char)*p) == TRANSLATE ('\n')
		    && !(syntax & RE_DOT_NEWLINE))
		  { /* We have .*\n.  */
		    STORE_JUMP (jump, b, laststart);
		    keep_string_p = true;
		  }
		else
		  /* Anything else.  */
		  STORE_JUMP (maybe_pop_jump, b, laststart - 3);

		/* We've added more stuff to the buffer.  */
		b += 3;
	      }

	    /* On failure, jump from laststart to b + 3, which will be the
	       end of the buffer after this jump is inserted.  */
	    GET_BUFFER_SPACE (3);
	    INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
				       : on_failure_jump,
			 laststart, b + 3);
	    pending_exact = 0;
	    b += 3;

	    if (!zero_times_ok)
	      {
		/* At least one repetition is required, so insert a
		   `dummy_failure_jump' before the initial
		   `on_failure_jump' instruction of the loop. This
		   effects a skip over that instruction the first time
		   we hit that loop.  */
		GET_BUFFER_SPACE (3);
		INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
		b += 3;
	      }
	    }
	  break;


	case '.':
	  laststart = b;
	  BUF_PUSH (anychar);
	  break;


	case '[':
	  {
	    CLEAR_RANGE_TABLE_WORK_USED (range_table_work);

	    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);

	    /* Ensure that we have enough space to push a charset: the
	       opcode, the length count, and the bitset; 34 bytes in all.  */
	    GET_BUFFER_SPACE (34);

	    laststart = b;

	    /* We test `*p == '^' twice, instead of using an if
	       statement, so we only need one BUF_PUSH.	 */
	    BUF_PUSH (*p == '^' ? charset_not : charset);
	    if (*p == '^')
	      p++;

	    /* Remember the first position in the bracket expression.  */
	    p1 = p;

	    /* Push the number of bytes in the bitmap.	*/
	    BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);

	    /* Clear the whole map.  */
	    bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);

	    /* charset_not matches newline according to a syntax bit.  */
	    if ((re_opcode_t) b[-2] == charset_not
		&& (syntax & RE_HAT_LISTS_NOT_NEWLINE))
	      SET_LIST_BIT ('\n');

	    /* Read in characters and ranges, setting map bits.	 */
	    for (;;)
	      {
		int len;
		boolean escaped_char = false;

		if (p == pend) FREE_STACK_RETURN (REG_EBRACK);

		PATFETCH (c);

		/* \ might escape characters inside [...] and [^...].  */
		if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
		  {
		    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);

		    PATFETCH (c);
		    escaped_char = true;
		  }
		else
		  {
		    /* Could be the end of the bracket expression.	If it's
		       not (i.e., when the bracket expression is `[]' so
		       far), the ']' character bit gets set way below.  */
		    if (c == ']' && p != p1 + 1)
		      break;
		  }

		/* If C indicates start of multibyte char, get the
		   actual character code in C, and set the pattern
		   pointer P to the next character boundary.  */
		if (bufp->multibyte && BASE_LEADING_CODE_P (c))
		  {
		    PATUNFETCH;
		    c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
		    p += len;
		  }
		/* What should we do for the character which is
		   greater than 0x7F, but not BASE_LEADING_CODE_P?
		   XXX */

		/* See if we're at the beginning of a possible character
		   class.  */

		else if (!escaped_char &&
			 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
		  {
		    /* Leave room for the null.	 */
		    char str[CHAR_CLASS_MAX_LENGTH + 1];

		    PATFETCH (c);
		    c1 = 0;

		    /* If pattern is `[[:'.  */
		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);

		    for (;;)
		      {
			PATFETCH (c);
			if (c == ':' || c == ']' || p == pend
			    || c1 == CHAR_CLASS_MAX_LENGTH)
			  break;
			str[c1++] = c;
		      }
		    str[c1] = '\0';

		    /* If isn't a word bracketed by `[:' and `:]':
		       undo the ending character, the letters, and
		       leave the leading `:' and `[' (but set bits for
		       them).  */
		    if (c == ':' && *p == ']')
		      {
			int ch;
			boolean is_alnum = STREQ (str, "alnum");
			boolean is_alpha = STREQ (str, "alpha");
			boolean is_blank = STREQ (str, "blank");
			boolean is_cntrl = STREQ (str, "cntrl");
			boolean is_digit = STREQ (str, "digit");
			boolean is_graph = STREQ (str, "graph");
			boolean is_lower = STREQ (str, "lower");
			boolean is_print = STREQ (str, "print");
			boolean is_punct = STREQ (str, "punct");
			boolean is_space = STREQ (str, "space");
			boolean is_upper = STREQ (str, "upper");
			boolean is_xdigit = STREQ (str, "xdigit");

			if (!IS_CHAR_CLASS (str))
			  FREE_STACK_RETURN (REG_ECTYPE);

			/* Throw away the ] at the end of the character
			   class.  */
			PATFETCH (c);

			if (p == pend) FREE_STACK_RETURN (REG_EBRACK);

			for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
			  {
			    int translated = TRANSLATE (ch);
			    /* This was split into 3 if's to
			       avoid an arbitrary limit in some compiler.  */
			    if (   (is_alnum  && ISALNUM (ch))
				|| (is_alpha  && ISALPHA (ch))
				|| (is_blank  && ISBLANK (ch))
				|| (is_cntrl  && ISCNTRL (ch)))
			      SET_LIST_BIT (translated);
			    if (   (is_digit  && ISDIGIT (ch))
				|| (is_graph  && ISGRAPH (ch))
				|| (is_lower  && ISLOWER (ch))
				|| (is_print  && ISPRINT (ch)))
			      SET_LIST_BIT (translated);
			    if (   (is_punct  && ISPUNCT (ch))
				|| (is_space  && ISSPACE (ch))
				|| (is_upper  && ISUPPER (ch))
				|| (is_xdigit && ISXDIGIT (ch)))
			      SET_LIST_BIT (translated);
			  }

			/* Repeat the loop. */
			continue;
		      }
		    else
		      {
			c1++;
			while (c1--)
			  PATUNFETCH;
			SET_LIST_BIT ('[');

			/* Because the `:' may starts the range, we
			   can't simply set bit and repeat the loop.
			   Instead, just set it to C and handle below.	*/
			c = ':';
		      }
		  }

		if (p < pend && p[0] == '-' && p[1] != ']')
		  {

		    /* Discard the `-'. */
		    PATFETCH (c1);

		    /* Fetch the character which ends the range. */
		    PATFETCH (c1);
		    if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
		      {
			PATUNFETCH;
			c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
			p += len;
		      }

		    if (SINGLE_BYTE_CHAR_P (c)
			&& ! SINGLE_BYTE_CHAR_P (c1))
		      {
			/* Handle a range such as \177-\377 in multibyte mode.
			   Split that into two ranges,,
			   the low one ending at 0237, and the high one
			   starting at ...040.  */
			int c1_base = (c1 & ~0177) | 040;
			SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
			c1 = 0237;
		      }
		    else if (!SAME_CHARSET_P (c, c1))
		      FREE_STACK_RETURN (REG_ERANGE);
		  }
		else
		  /* Range from C to C. */
		  c1 = c;

		/* Set the range ... */
		if (SINGLE_BYTE_CHAR_P (c))
		  /* ... into bitmap.  */
		  {
		    unsigned this_char;
		    int range_start = c, range_end = c1;

		    /* If the start is after the end, the range is empty.  */
		    if (range_start > range_end)
		      {
			if (syntax & RE_NO_EMPTY_RANGES)
			  FREE_STACK_RETURN (REG_ERANGE);
			/* Else, repeat the loop.  */
		      }
		    else
		      {
			for (this_char = range_start; this_char <= range_end;
			     this_char++)
			  SET_LIST_BIT (TRANSLATE (this_char));
		      }
		  }
		else
		  /* ... into range table.  */
		  SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
	      }

	    /* Discard any (non)matching list bytes that are all 0 at the
	       end of the map.	Decrease the map-length byte too.  */
	    while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
	      b[-1]--;
	    b += b[-1];

	    /* Build real range table from work area. */
	    if (RANGE_TABLE_WORK_USED (range_table_work))
	      {
		int i;
		int used = RANGE_TABLE_WORK_USED (range_table_work);

		/* Allocate space for COUNT + RANGE_TABLE.  Needs two
		   bytes for COUNT and three bytes for each character.	*/
		GET_BUFFER_SPACE (2 + used * 3);

		/* Indicate the existence of range table.  */
		laststart[1] |= 0x80;

		STORE_NUMBER_AND_INCR (b, used / 2);
		for (i = 0; i < used; i++)
		  STORE_CHARACTER_AND_INCR
		    (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
	      }
	  }
	  break;


	case '(':
	  if (syntax & RE_NO_BK_PARENS)
	    goto handle_open;
	  else
	    goto normal_char;


	case ')':
	  if (syntax & RE_NO_BK_PARENS)
	    goto handle_close;
	  else
	    goto normal_char;


	case '\n':
	  if (syntax & RE_NEWLINE_ALT)
	    goto handle_alt;
	  else
	    goto normal_char;


	case '|':
	  if (syntax & RE_NO_BK_VBAR)
	    goto handle_alt;
	  else
	    goto normal_char;


	case '{':
	   if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
	     goto handle_interval;
	   else
	     goto normal_char;


	case '\\':
	  if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);

	  /* Do not translate the character after the \, so that we can
	     distinguish, e.g., \B from \b, even if we normally would
	     translate, e.g., B to b.  */
	  PATFETCH_RAW (c);

	  switch (c)
	    {
	    case '(':
	      if (syntax & RE_NO_BK_PARENS)
		goto normal_backslash;

	    handle_open:
	      bufp->re_nsub++;
	      regnum++;

	      if (COMPILE_STACK_FULL)
		{
		  RETALLOC (compile_stack.stack, compile_stack.size << 1,
			    compile_stack_elt_t);
		  if (compile_stack.stack == NULL) return REG_ESPACE;

		  compile_stack.size <<= 1;
		}

	      /* These are the values to restore when we hit end of this
		 group.	 They are all relative offsets, so that if the
		 whole pattern moves because of realloc, they will still
		 be valid.  */
	      COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
	      COMPILE_STACK_TOP.fixup_alt_jump
		= fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
	      COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
	      COMPILE_STACK_TOP.regnum = regnum;

	      /* We will eventually replace the 0 with the number of
		 groups inner to this one.  But do not push a
		 start_memory for groups beyond the last one we can
		 represent in the compiled pattern.  */
	      if (regnum <= MAX_REGNUM)
		{
		  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
		  BUF_PUSH_3 (start_memory, regnum, 0);
		}

	      compile_stack.avail++;

	      fixup_alt_jump = 0;
	      laststart = 0;
	      begalt = b;
	      /* If we've reached MAX_REGNUM groups, then this open
		 won't actually generate any code, so we'll have to
		 clear pending_exact explicitly.  */
	      pending_exact = 0;
	      break;


	    case ')':
	      if (syntax & RE_NO_BK_PARENS) goto normal_backslash;

	      if (COMPILE_STACK_EMPTY)
		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
		  goto normal_backslash;
		else
		  FREE_STACK_RETURN (REG_ERPAREN);

	    handle_close:
	      if (fixup_alt_jump)
		{ /* Push a dummy failure point at the end of the
		     alternative for a possible future
		     `pop_failure_jump' to pop.	 See comments at
		     `push_dummy_failure' in `re_match_2'.  */
		  BUF_PUSH (push_dummy_failure);

		  /* We allocated space for this jump when we assigned
		     to `fixup_alt_jump', in the `handle_alt' case below.  */
		  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
		}

	      /* See similar code for backslashed left paren above.  */
	      if (COMPILE_STACK_EMPTY)
		if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
		  goto normal_char;
		else
		  FREE_STACK_RETURN (REG_ERPAREN);

	      /* Since we just checked for an empty stack above, this
		 ``can't happen''.  */
	      assert (compile_stack.avail != 0);
	      {
		/* We don't just want to restore into `regnum', because
		   later groups should continue to be numbered higher,
		   as in `(ab)c(de)' -- the second group is #2.	 */
		regnum_t this_group_regnum;

		compile_stack.avail--;
		begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
		fixup_alt_jump
		  = COMPILE_STACK_TOP.fixup_alt_jump
		    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
		    : 0;
		laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
		this_group_regnum = COMPILE_STACK_TOP.regnum;
		/* If we've reached MAX_REGNUM groups, then this open
		   won't actually generate any code, so we'll have to
		   clear pending_exact explicitly.  */
		pending_exact = 0;

		/* We're at the end of the group, so now we know how many
		   groups were inside this one.	 */
		if (this_group_regnum <= MAX_REGNUM)
		  {
		    unsigned char *inner_group_loc
		      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;

		    *inner_group_loc = regnum - this_group_regnum;
		    BUF_PUSH_3 (stop_memory, this_group_regnum,
				regnum - this_group_regnum);
		  }
	      }
	      break;


	    case '|':					/* `\|'.  */
	      if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
		goto normal_backslash;
	    handle_alt:
	      if (syntax & RE_LIMITED_OPS)
		goto normal_char;

	      /* Insert before the previous alternative a jump which
		 jumps to this alternative if the former fails.	 */
	      GET_BUFFER_SPACE (3);
	      INSERT_JUMP (on_failure_jump, begalt, b + 6);
	      pending_exact = 0;
	      b += 3;

	      /* The alternative before this one has a jump after it
		 which gets executed if it gets matched.  Adjust that
		 jump so it will jump to this alternative's analogous
		 jump (put in below, which in turn will jump to the next
		 (if any) alternative's such jump, etc.).  The last such
		 jump jumps to the correct final destination.  A picture:
			  _____ _____
			  |   | |   |
			  |   v |   v
			 a | b	 | c

		 If we are at `b', then fixup_alt_jump right now points to a
		 three-byte space after `a'.  We'll put in the jump, set
		 fixup_alt_jump to right after `b', and leave behind three
		 bytes which we'll fill in when we get to after `c'.  */

	      if (fixup_alt_jump)
		STORE_JUMP (jump_past_alt, fixup_alt_jump, b);

	      /* Mark and leave space for a jump after this alternative,
		 to be filled in later either by next alternative or
		 when know we're at the end of a series of alternatives.  */
	      fixup_alt_jump = b;
	      GET_BUFFER_SPACE (3);
	      b += 3;

	      laststart = 0;
	      begalt = b;
	      break;


	    case '{':
	      /* If \{ is a literal.  */
	      if (!(syntax & RE_INTERVALS)
		     /* If we're at `\{' and it's not the open-interval
			operator.  */
		  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
		  || (p - 2 == pattern	&&  p == pend))
		goto normal_backslash;

	    handle_interval:
	      {
		/* If got here, then the syntax allows intervals.  */

		/* At least (most) this many matches must be made.  */
		int lower_bound = -1, upper_bound = -1;

		beg_interval = p - 1;

		if (p == pend)
		  {
		    if (syntax & RE_NO_BK_BRACES)
		      goto unfetch_interval;
		    else
		      FREE_STACK_RETURN (REG_EBRACE);
		  }

		GET_UNSIGNED_NUMBER (lower_bound);

		if (c == ',')
		  {
		    GET_UNSIGNED_NUMBER (upper_bound);
		    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
		  }
		else
		  /* Interval such as `{1}' => match exactly once. */
		  upper_bound = lower_bound;

		if (lower_bound < 0 || upper_bound > RE_DUP_MAX
		    || lower_bound > upper_bound)
		  {
		    if (syntax & RE_NO_BK_BRACES)
		      goto unfetch_interval;
		    else
		      FREE_STACK_RETURN (REG_BADBR);
		  }

		if (!(syntax & RE_NO_BK_BRACES))
		  {
		    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);

		    PATFETCH (c);
		  }

		if (c != '}')
		  {
		    if (syntax & RE_NO_BK_BRACES)
		      goto unfetch_interval;
		    else
		      FREE_STACK_RETURN (REG_BADBR);
		  }

		/* We just parsed a valid interval.  */

		/* If it's invalid to have no preceding re.  */
		if (!laststart)
		  {
		    if (syntax & RE_CONTEXT_INVALID_OPS)
		      FREE_STACK_RETURN (REG_BADRPT);
		    else if (syntax & RE_CONTEXT_INDEP_OPS)
		      laststart = b;
		    else
		      goto unfetch_interval;
		  }

		/* If the upper bound is zero, don't want to succeed at
		   all; jump from `laststart' to `b + 3', which will be
		   the end of the buffer after we insert the jump.  */
		 if (upper_bound == 0)
		   {
		     GET_BUFFER_SPACE (3);
		     INSERT_JUMP (jump, laststart, b + 3);
		     b += 3;
		   }

		 /* Otherwise, we have a nontrivial interval.  When
		    we're all done, the pattern will look like:
		      set_number_at <jump count> <upper bound>
		      set_number_at <succeed_n count> <lower bound>
		      succeed_n <after jump addr> <succeed_n count>
		      <body of loop>
		      jump_n <succeed_n addr> <jump count>
		    (The upper bound and `jump_n' are omitted if
		    `upper_bound' is 1, though.)  */
		 else
		   { /* If the upper bound is > 1, we need to insert
			more at the end of the loop.  */
		     unsigned nbytes = 10 + (upper_bound > 1) * 10;

		     GET_BUFFER_SPACE (nbytes);

		     /* Initialize lower bound of the `succeed_n', even
			though it will be set during matching by its
			attendant `set_number_at' (inserted next),
			because `re_compile_fastmap' needs to know.
			Jump to the `jump_n' we might insert below.  */
		     INSERT_JUMP2 (succeed_n, laststart,
				   b + 5 + (upper_bound > 1) * 5,
				   lower_bound);
		     b += 5;

		     /* Code to initialize the lower bound.  Insert
			before the `succeed_n'.	 The `5' is the last two
			bytes of this `set_number_at', plus 3 bytes of
			the following `succeed_n'.  */
		     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
		     b += 5;

		     if (upper_bound > 1)
		       { /* More than one repetition is allowed, so
			    append a backward jump to the `succeed_n'
			    that starts this interval.

			    When we've reached this during matching,
			    we'll have matched the interval once, so
			    jump back only `upper_bound - 1' times.  */
			 STORE_JUMP2 (jump_n, b, laststart + 5,
				      upper_bound - 1);
			 b += 5;

			 /* The location we want to set is the second
			    parameter of the `jump_n'; that is `b-2' as
			    an absolute address.  `laststart' will be
			    the `set_number_at' we're about to insert;
			    `laststart+3' the number to set, the source
			    for the relative address.  But we are
			    inserting into the middle of the pattern --
			    so everything is getting moved up by 5.
			    Conclusion: (b - 2) - (laststart + 3) + 5,
			    i.e., b - laststart.

			    We insert this at the beginning of the loop
			    so that if we fail during matching, we'll
			    reinitialize the bounds.  */
			 insert_op2 (set_number_at, laststart, b - laststart,
				     upper_bound - 1, b);
			 b += 5;
		       }
		   }
		pending_exact = 0;
		beg_interval = NULL;
	      }
	      break;

	    unfetch_interval:
	      /* If an invalid interval, match the characters as literals.  */
	       assert (beg_interval);
	       p = beg_interval;
	       beg_interval = NULL;

	       /* normal_char and normal_backslash need `c'.  */
	       PATFETCH (c);

	       if (!(syntax & RE_NO_BK_BRACES))
		 {
		   if (p > pattern  &&	p[-1] == '\\')
		     goto normal_backslash;
		 }
	       goto normal_char;

#ifdef emacs
	    /* There is no way to specify the before_dot and after_dot
	       operators.  rms says this is ok.	 --karl	 */
	    case '=':
	      BUF_PUSH (at_dot);
	      break;

	    case 's':
	      laststart = b;
	      PATFETCH (c);
	      BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
	      break;

	    case 'S':
	      laststart = b;
	      PATFETCH (c);
	      BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
	      break;

	    case 'c':
	      laststart = b;
	      PATFETCH_RAW (c);
	      BUF_PUSH_2 (categoryspec, c);
	      break;

	    case 'C':
	      laststart = b;
	      PATFETCH_RAW (c);
	      BUF_PUSH_2 (notcategoryspec, c);
	      break;
#endif /* emacs */


	    case 'w':
	      laststart = b;
	      BUF_PUSH (wordchar);
	      break;


	    case 'W':
	      laststart = b;
	      BUF_PUSH (notwordchar);
	      break;


	    case '<':
	      BUF_PUSH (wordbeg);
	      break;

	    case '>':
	      BUF_PUSH (wordend);
	      break;

	    case 'b':
	      BUF_PUSH (wordbound);
	      break;

	    case 'B':
	      BUF_PUSH (notwordbound);
	      break;

	    case '`':
	      BUF_PUSH (begbuf);
	      break;

	    case '\'':
	      BUF_PUSH (endbuf);
	      break;

	    case '1': case '2': case '3': case '4': case '5':
	    case '6': case '7': case '8': case '9':
	      if (syntax & RE_NO_BK_REFS)
		goto normal_char;

	      c1 = c - '0';

	      if (c1 > regnum)
		FREE_STACK_RETURN (REG_ESUBREG);

	      /* Can't back reference to a subexpression if inside of it.  */
	      if (group_in_compile_stack (compile_stack, c1))
		goto normal_char;

	      laststart = b;
	      BUF_PUSH_2 (duplicate, c1);
	      break;


	    case '+':
	    case '?':
	      if (syntax & RE_BK_PLUS_QM)
		goto handle_plus;
	      else
		goto normal_backslash;

	    default:
	    normal_backslash:
	      /* You might think it would be useful for \ to mean
		 not to translate; but if we don't translate it
		 it will never match anything.	*/
	      c = TRANSLATE (c);
	      goto normal_char;
	    }
	  break;


	default:
	/* Expects the character in `c'.  */
	normal_char:
	  p1 = p - 1;		/* P1 points the head of C.  */
#ifdef emacs
	  if (bufp->multibyte)
	    {
	      c = STRING_CHAR (p1, pend - p1);
	      c = TRANSLATE (c);
	      /* Set P to the next character boundary.  */
	      p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
	    }
#endif
	      /* If no exactn currently being built.  */
	  if (!pending_exact

	      /* If last exactn not at current position.  */
	      || pending_exact + *pending_exact + 1 != b

	      /* We have only one byte following the exactn for the count.  */
	      || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)

	      /* If followed by a repetition operator.	*/
	      || (p != pend && (*p == '*' || *p == '^'))
	      || ((syntax & RE_BK_PLUS_QM)
		  ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
		  : p != pend && (*p == '+' || *p == '?'))
	      || ((syntax & RE_INTERVALS)
		  && ((syntax & RE_NO_BK_BRACES)
		      ? p != pend && *p == '{'
		      : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
	    {
	      /* Start building a new exactn.  */

	      laststart = b;

	      BUF_PUSH_2 (exactn, 0);
	      pending_exact = b - 1;
	    }

#ifdef emacs
	  if (! SINGLE_BYTE_CHAR_P (c))
	    {
	      unsigned char work[4], *str;
	      int i = CHAR_STRING (c, work, str);
	      int j;
	      for (j = 0; j < i; j++)
		{
		  BUF_PUSH (str[j]);
		  (*pending_exact)++;
		}
	    }
	  else
#endif
	    {
	      BUF_PUSH (c);
	      (*pending_exact)++;
	    }
	  break;
	} /* switch (c) */
    } /* while p != pend */


  /* Through the pattern now.  */

  if (fixup_alt_jump)
    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);

  if (!COMPILE_STACK_EMPTY)
    FREE_STACK_RETURN (REG_EPAREN);

  /* If we don't want backtracking, force success
     the first time we reach the end of the compiled pattern.  */
  if (syntax & RE_NO_POSIX_BACKTRACKING)
    BUF_PUSH (succeed);

  free (compile_stack.stack);

  /* We have succeeded; set the length of the buffer.  */
  bufp->used = b - bufp->buffer;

#ifdef DEBUG
  if (debug)
    {
      DEBUG_PRINT1 ("\nCompiled pattern: \n");
      print_compiled_pattern (bufp);
    }
#endif /* DEBUG */

#ifndef MATCH_MAY_ALLOCATE
  /* Initialize the failure stack to the largest possible stack.  This
     isn't necessary unless we're trying to avoid calling alloca in
     the search and match routines.  */
  {
    int num_regs = bufp->re_nsub + 1;

    if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
      {
	fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;

#ifdef emacs
	if (! fail_stack.stack)
	  fail_stack.stack
	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
					    * sizeof (fail_stack_elt_t));
	else
	  fail_stack.stack
	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
					     (fail_stack.size
					      * sizeof (fail_stack_elt_t)));
#else /* not emacs */
	if (! fail_stack.stack)
	  fail_stack.stack
	    = (fail_stack_elt_t *) malloc (fail_stack.size
					   * sizeof (fail_stack_elt_t));
	else
	  fail_stack.stack
	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
					    (fail_stack.size
					     * sizeof (fail_stack_elt_t)));
#endif /* not emacs */
      }

    regex_grow_registers (num_regs);
  }
#endif /* not MATCH_MAY_ALLOCATE */

  return REG_NOERROR;
} /* regex_compile */

/* Subroutines for `regex_compile'.  */

/* Store OP at LOC followed by two-byte integer parameter ARG.	*/

static void
store_op1 (op, loc, arg)
    re_opcode_t op;
    unsigned char *loc;
    int arg;
{
  *loc = (unsigned char) op;
  STORE_NUMBER (loc + 1, arg);
}


/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */

static void
store_op2 (op, loc, arg1, arg2)
    re_opcode_t op;
    unsigned char *loc;
    int arg1, arg2;
{
  *loc = (unsigned char) op;
  STORE_NUMBER (loc + 1, arg1);
  STORE_NUMBER (loc + 3, arg2);
}


/* Copy the bytes from LOC to END to open up three bytes of space at LOC
   for OP followed by two-byte integer parameter ARG.  */

static void
insert_op1 (op, loc, arg, end)
    re_opcode_t op;
    unsigned char *loc;
    int arg;
    unsigned char *end;
{
  register unsigned char *pfrom = end;
  register unsigned char *pto = end + 3;

  while (pfrom != loc)
    *--pto = *--pfrom;

  store_op1 (op, loc, arg);
}


/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */

static void
insert_op2 (op, loc, arg1, arg2, end)
    re_opcode_t op;
    unsigned char *loc;
    int arg1, arg2;
    unsigned char *end;
{
  register unsigned char *pfrom = end;
  register unsigned char *pto = end + 5;

  while (pfrom != loc)
    *--pto = *--pfrom;

  store_op2 (op, loc, arg1, arg2);
}


/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
   after an alternative or a begin-subexpression.  We assume there is at
   least one character before the ^.  */

static boolean
at_begline_loc_p (pattern, p, syntax)
    const char *pattern, *p;
    reg_syntax_t syntax;
{
  const char *prev = p - 2;
  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';

  return
       /* After a subexpression?  */
       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
       /* After an alternative?	 */
    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
}


/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
   at least one character after the $, i.e., `P < PEND'.  */

static boolean
at_endline_loc_p (p, pend, syntax)
    const char *p, *pend;
    int syntax;
{
  const char *next = p;
  boolean next_backslash = *next == '\\';
  const char *next_next = p + 1 < pend ? p + 1 : 0;

  return
       /* Before a subexpression?  */
       (syntax & RE_NO_BK_PARENS ? *next == ')'
	: next_backslash && next_next && *next_next == ')')
       /* Before an alternative?  */
    || (syntax & RE_NO_BK_VBAR ? *next == '|'
	: next_backslash && next_next && *next_next == '|');
}


/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
   false if it's not.  */

static boolean
group_in_compile_stack (compile_stack, regnum)
    compile_stack_type compile_stack;
    regnum_t regnum;
{
  int this_element;

  for (this_element = compile_stack.avail - 1;
       this_element >= 0;
       this_element--)
    if (compile_stack.stack[this_element].regnum == regnum)
      return true;

  return false;
}

/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
   characters can start a string that matches the pattern.  This fastmap
   is used by re_search to skip quickly over impossible starting points.

   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
   area as BUFP->fastmap.

   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
   the pattern buffer.

   Returns 0 if we succeed, -2 if an internal error.   */

int
re_compile_fastmap (bufp)
     struct re_pattern_buffer *bufp;
{
  int i, j, k;
#ifdef MATCH_MAY_ALLOCATE
  fail_stack_type fail_stack;
#endif
#ifndef REGEX_MALLOC
  char *destination;
#endif
  /* We don't push any register information onto the failure stack.  */
  unsigned num_regs = 0;

  register char *fastmap = bufp->fastmap;
  unsigned char *pattern = bufp->buffer;
  unsigned long size = bufp->used;
  unsigned char *p = pattern;
  register unsigned char *pend = pattern + size;

  /* This holds the pointer to the failure stack, when
     it is allocated relocatably.  */
  fail_stack_elt_t *failure_stack_ptr;

  /* Assume that each path through the pattern can be null until
     proven otherwise.	We set this false at the bottom of switch
     statement, to which we get only if a particular path doesn't
     match the empty string.  */
  boolean path_can_be_null = true;

  /* We aren't doing a `succeed_n' to begin with.  */
  boolean succeed_n_p = false;

  /* If all elements for base leading-codes in fastmap is set, this
     flag is set true.	*/
  boolean match_any_multibyte_characters = false;

  /* Maximum code of simple (single byte) character. */
  int simple_char_max;

  assert (fastmap != NULL && p != NULL);

  INIT_FAIL_STACK ();
  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.	*/
  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
  bufp->can_be_null = 0;

  while (1)
    {
      if (p == pend || *p == succeed)
	{
	  /* We have reached the (effective) end of pattern.  */
	  if (!FAIL_STACK_EMPTY ())
	    {
	      bufp->can_be_null |= path_can_be_null;

	      /* Reset for next path.  */
	      path_can_be_null = true;

	      p = fail_stack.stack[--fail_stack.avail].pointer;

	      continue;
	    }
	  else
	    break;
	}

      /* We should never be about to go beyond the end of the pattern.	*/
      assert (p < pend);

      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
	{

	/* I guess the idea here is to simply not bother with a fastmap
	   if a backreference is used, since it's too hard to figure out
	   the fastmap for the corresponding group.  Setting
	   `can_be_null' stops `re_search_2' from using the fastmap, so
	   that is all we do.  */
	case duplicate:
	  bufp->can_be_null = 1;
	  goto done;


      /* Following are the cases which match a character.  These end
	 with `break'.	*/

	case exactn:
	  fastmap[p[1]] = 1;
	  break;


#ifndef emacs
	case charset:
	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
	      fastmap[j] = 1;
	  break;


	case charset_not:
	  /* Chars beyond end of map must be allowed.  */
	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
	    fastmap[j] = 1;

	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
	      fastmap[j] = 1;
	  break;


	case wordchar:
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) == Sword)
	      fastmap[j] = 1;
	  break;


	case notwordchar:
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) != Sword)
	      fastmap[j] = 1;
	  break;
#else  /* emacs */
	case charset:
	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
	       j >= 0; j--)
	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
	      fastmap[j] = 1;

	  if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
	      && match_any_multibyte_characters == false)
	    {
	      /* Set fastmap[I] 1 where I is a base leading code of each
		 multibyte character in the range table. */
	      int c, count;

	      /* Make P points the range table. */
	      p += CHARSET_BITMAP_SIZE (&p[-2]);

	      /* Extract the number of ranges in range table into
		 COUNT.	 */
	      EXTRACT_NUMBER_AND_INCR (count, p);
	      for (; count > 0; count--, p += 2 * 3) /* XXX */
		{
		  /* Extract the start of each range.  */
		  EXTRACT_CHARACTER (c, p);
		  j = CHAR_CHARSET (c);
		  fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
		}
	    }
	  break;


	case charset_not:
	  /* Chars beyond end of bitmap are possible matches.
	     All the single-byte codes can occur in multibyte buffers.
	     So any that are not listed in the charset
	     are possible matches, even in multibyte buffers.  */
	  simple_char_max = (1 << BYTEWIDTH);
	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
	       j < simple_char_max; j++)
	    fastmap[j] = 1;

	  for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
	       j >= 0; j--)
	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
	      fastmap[j] = 1;

	  if (bufp->multibyte)
	    /* Any character set can possibly contain a character
	       which doesn't match the specified set of characters.  */
	    {
	    set_fastmap_for_multibyte_characters:
	      if (match_any_multibyte_characters == false)
		{
		  for (j = 0x80; j < 0xA0; j++)	/* XXX */
		    if (BASE_LEADING_CODE_P (j))
		      fastmap[j] = 1;
		  match_any_multibyte_characters = true;
		}
	    }
	  break;


	case wordchar:
	  /* All the single-byte codes can occur in multibyte buffers,
	     and they may have word syntax.  So do consider them.  */
	  simple_char_max = (1 << BYTEWIDTH);
	  for (j = 0; j < simple_char_max; j++)
	    if (SYNTAX (j) == Sword)
	      fastmap[j] = 1;

	  if (bufp->multibyte)
	    /* Any character set can possibly contain a character
	       whose syntax is `Sword'.	 */
	    goto set_fastmap_for_multibyte_characters;
	  break;


	case notwordchar:
	  /* All the single-byte codes can occur in multibyte buffers,
	     and they may not have word syntax.  So do consider them.  */
	  simple_char_max = (1 << BYTEWIDTH);
	  for (j = 0; j < simple_char_max; j++)
	    if (SYNTAX (j) != Sword)
	      fastmap[j] = 1;

	  if (bufp->multibyte)
	    /* Any character set can possibly contain a character
	       whose syntax is not `Sword'.  */
	    goto set_fastmap_for_multibyte_characters;
	  break;
#endif

	case anychar:
	  {
	    int fastmap_newline = fastmap['\n'];

	    /* `.' matches anything, except perhaps newline.
	       Even in a multibyte buffer, it should match any
	       conceivable byte value for the fastmap.  */
	    if (bufp->multibyte)
	      match_any_multibyte_characters = true;

	    simple_char_max = (1 << BYTEWIDTH);
	    for (j = 0; j < simple_char_max; j++)
	      fastmap[j] = 1;

	    /* ... except perhaps newline.  */
	    if (!(bufp->syntax & RE_DOT_NEWLINE))
	      fastmap['\n'] = fastmap_newline;

	    /* Return if we have already set `can_be_null'; if we have,
	       then the fastmap is irrelevant.	Something's wrong here.	 */
	    else if (bufp->can_be_null)
	      goto done;

	    /* Otherwise, have to check alternative paths.  */
	    break;
	  }

#ifdef emacs
	case wordbound:
	case notwordbound:
	case wordbeg:
	case wordend:
	case notsyntaxspec:
	case syntaxspec:
	  /* This match depends on text properties.  These end with
	     aborting optimizations.  */
	  bufp->can_be_null = 1;
	  goto done;
#if 0
	  k = *p++;
	  simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
	  for (j = 0; j < simple_char_max; j++)
	    if (SYNTAX (j) == (enum syntaxcode) k)
	      fastmap[j] = 1;

	  if (bufp->multibyte)
	    /* Any character set can possibly contain a character
	       whose syntax is K.  */
	    goto set_fastmap_for_multibyte_characters;
	  break;

	case notsyntaxspec:
	  k = *p++;
	  simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
	  for (j = 0; j < simple_char_max; j++)
	    if (SYNTAX (j) != (enum syntaxcode) k)
	      fastmap[j] = 1;

	  if (bufp->multibyte)
	    /* Any character set can possibly contain a character
	       whose syntax is not K.  */
	    goto set_fastmap_for_multibyte_characters;
	  break;
#endif


	case categoryspec:
	  k = *p++;
	  simple_char_max = (1 << BYTEWIDTH);
	  for (j = 0; j < simple_char_max; j++)
	    if (CHAR_HAS_CATEGORY (j, k))
	      fastmap[j] = 1;

	  if (bufp->multibyte)
	    /* Any character set can possibly contain a character
	       whose category is K.  */
	    goto set_fastmap_for_multibyte_characters;
	  break;


	case notcategoryspec:
	  k = *p++;
	  simple_char_max = (1 << BYTEWIDTH);
	  for (j = 0; j < simple_char_max; j++)
	    if (!CHAR_HAS_CATEGORY (j, k))
	      fastmap[j] = 1;

	  if (bufp->multibyte)
	    /* Any character set can possibly contain a character
	       whose category is not K.	 */
	    goto set_fastmap_for_multibyte_characters;
	  break;

      /* All cases after this match the empty string.  These end with
	 `continue'.  */


	case before_dot:
	case at_dot:
	case after_dot:
	  continue;
#endif /* emacs */


	case no_op:
	case begline:
	case endline:
	case begbuf:
	case endbuf:
#ifndef emacs
	case wordbound:
	case notwordbound:
	case wordbeg:
	case wordend:
#endif
	case push_dummy_failure:
	  continue;


	case jump_n:
	case pop_failure_jump:
	case maybe_pop_jump:
	case jump:
	case jump_past_alt:
	case dummy_failure_jump:
	  EXTRACT_NUMBER_AND_INCR (j, p);
	  p += j;
	  if (j > 0)
	    continue;

	  /* Jump backward implies we just went through the body of a
	     loop and matched nothing.	Opcode jumped to should be
	     `on_failure_jump' or `succeed_n'.	Just treat it like an
	     ordinary jump.  For a * loop, it has pushed its failure
	     point already; if so, discard that as redundant.  */
	  if ((re_opcode_t) *p != on_failure_jump
	      && (re_opcode_t) *p != succeed_n)
	    continue;

	  p++;
	  EXTRACT_NUMBER_AND_INCR (j, p);
	  p += j;

	  /* If what's on the stack is where we are now, pop it.  */
	  if (!FAIL_STACK_EMPTY ()
	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
	    fail_stack.avail--;

	  continue;


	case on_failure_jump:
	case on_failure_keep_string_jump:
	handle_on_failure_jump:
	  EXTRACT_NUMBER_AND_INCR (j, p);

	  /* For some patterns, e.g., `(a?)?', `p+j' here points to the
	     end of the pattern.  We don't want to push such a point,
	     since when we restore it above, entering the switch will
	     increment `p' past the end of the pattern.	 We don't need
	     to push such a point since we obviously won't find any more
	     fastmap entries beyond `pend'.  Such a pattern can match
	     the null string, though.  */
	  if (p + j < pend)
	    {
	      if (!PUSH_PATTERN_OP (p + j, fail_stack))
		{
		  RESET_FAIL_STACK ();
		  return -2;
		}
	    }
	  else
	    bufp->can_be_null = 1;

	  if (succeed_n_p)
	    {
	      EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.	*/
	      succeed_n_p = false;
	    }

	  continue;


	case succeed_n:
	  /* Get to the number of times to succeed.  */
	  p += 2;

	  /* Increment p past the n for when k != 0.  */
	  EXTRACT_NUMBER_AND_INCR (k, p);
	  if (k == 0)
	    {
	      p -= 4;
	      succeed_n_p = true;  /* Spaghetti code alert.  */
	      goto handle_on_failure_jump;
	    }
	  continue;


	case set_number_at:
	  p += 4;
	  continue;


	case start_memory:
	case stop_memory:
	  p += 2;
	  continue;


	default:
	  abort (); /* We have listed all the cases.  */
	} /* switch *p++ */

      /* Getting here means we have found the possible starting
	 characters for one path of the pattern -- and that the empty
	 string does not match.	 We need not follow this path further.
	 Instead, look at the next alternative (remembered on the
	 stack), or quit if no more.  The test at the top of the loop
	 does these things.  */
      path_can_be_null = false;
      p = pend;
    } /* while p */

  /* Set `can_be_null' for the last path (also the first path, if the
     pattern is empty).	 */
  bufp->can_be_null |= path_can_be_null;

 done:
  RESET_FAIL_STACK ();
  return 0;
} /* re_compile_fastmap */

/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
   this memory for recording register information.  STARTS and ENDS
   must be allocated using the malloc library routine, and must each
   be at least NUM_REGS * sizeof (regoff_t) bytes long.

   If NUM_REGS == 0, then subsequent matches should allocate their own
   register data.

   Unless this function is called, the first search or match using
   PATTERN_BUFFER will allocate its own register data, without
   freeing the old data.  */

void
re_set_registers (bufp, regs, num_regs, starts, ends)
    struct re_pattern_buffer *bufp;
    struct re_registers *regs;
    unsigned num_regs;
    regoff_t *starts, *ends;
{
  if (num_regs)
    {
      bufp->regs_allocated = REGS_REALLOCATE;
      regs->num_regs = num_regs;
      regs->start = starts;
      regs->end = ends;
    }
  else
    {
      bufp->regs_allocated = REGS_UNALLOCATED;
      regs->num_regs = 0;
      regs->start = regs->end = (regoff_t *) 0;
    }
}

/* Searching routines.	*/

/* Like re_search_2, below, but only one string is specified, and
   doesn't let you say where to stop matching. */

int
re_search (bufp, string, size, startpos, range, regs)
     struct re_pattern_buffer *bufp;
     const char *string;
     int size, startpos, range;
     struct re_registers *regs;
{
  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
		      regs, size);
}

/* End address of virtual concatenation of string.  */
#define STOP_ADDR_VSTRING(P)				\
  (((P) >= size1 ? string2 + size2 : string1 + size1))

/* Address of POS in the concatenation of virtual string. */
#define POS_ADDR_VSTRING(POS)					\
  (((POS) >= size1 ? string2 - size1 : string1) + (POS))

/* Using the compiled pattern in BUFP->buffer, first tries to match the
   virtual concatenation of STRING1 and STRING2, starting first at index
   STARTPOS, then at STARTPOS + 1, and so on.

   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.

   RANGE is how far to scan while trying to match.  RANGE = 0 means try
   only at STARTPOS; in general, the last start tried is STARTPOS +
   RANGE.

   In REGS, return the indices of the virtual concatenation of STRING1
   and STRING2 that matched the entire BUFP->buffer and its contained
   subexpressions.

   Do not consider matching one past the index STOP in the virtual
   concatenation of STRING1 and STRING2.

   We return either the position in the strings at which the match was
   found, -1 if no match, or -2 if error (such as failure
   stack overflow).  */

int
re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
     struct re_pattern_buffer *bufp;
     const char *string1, *string2;
     int size1, size2;
     int startpos;
     int range;
     struct re_registers *regs;
     int stop;
{
  int val;
  register char *fastmap = bufp->fastmap;
  register RE_TRANSLATE_TYPE translate = bufp->translate;
  int total_size = size1 + size2;
  int endpos = startpos + range;
  int anchored_start = 0;

  /* Nonzero if we have to concern multibyte character.	 */
  int multibyte = bufp->multibyte;

  /* Check for out-of-range STARTPOS.  */
  if (startpos < 0 || startpos > total_size)
    return -1;

  /* Fix up RANGE if it might eventually take us outside
     the virtual concatenation of STRING1 and STRING2.
     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
  if (endpos < 0)
    range = 0 - startpos;
  else if (endpos > total_size)
    range = total_size - startpos;

  /* If the search isn't to be a backwards one, don't waste time in a
     search for a pattern anchored at beginning of buffer.  */
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
    {
      if (startpos > 0)
	return -1;
      else
	range = 0;
    }

#ifdef emacs
  /* In a forward search for something that starts with \=.
     don't keep searching past point.  */
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
    {
      range = PT_BYTE - BEGV_BYTE - startpos;
      if (range < 0)
	return -1;
    }
#endif /* emacs */

  /* Update the fastmap now if not correct already.  */
  if (fastmap && !bufp->fastmap_accurate)
    if (re_compile_fastmap (bufp) == -2)
      return -2;

  /* See whether the pattern is anchored.  */
  if (bufp->buffer[0] == begline)
    anchored_start = 1;

#ifdef emacs
  gl_state.object = re_match_object;
  {
    int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
    int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (startpos + adjpos);

    SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
  }
#endif

  /* Loop through the string, looking for a place to start matching.  */
  for (;;)
    {
      /* If the pattern is anchored,
	 skip quickly past places we cannot match.
	 We don't bother to treat startpos == 0 specially
	 because that case doesn't repeat.  */
      if (anchored_start && startpos > 0)
	{
	  if (! (bufp->newline_anchor
		 && ((startpos <= size1 ? string1[startpos - 1]
		      : string2[startpos - size1 - 1])
		     == '\n')))
	    goto advance;
	}

      /* If a fastmap is supplied, skip quickly over characters that
	 cannot be the start of a match.  If the pattern can match the
	 null string, however, we don't need to skip characters; we want
	 the first null string.	 */
      if (fastmap && startpos < total_size && !bufp->can_be_null)
	{
	  register const char *d;
	  register unsigned int buf_ch;

	  d = POS_ADDR_VSTRING (startpos);

	  if (range > 0)	/* Searching forwards.	*/
	    {
	      register int lim = 0;
	      int irange = range;

	      if (startpos < size1 && startpos + range >= size1)
		lim = range - (size1 - startpos);

	      /* Written out as an if-else to avoid testing `translate'
		 inside the loop.  */
	      if (RE_TRANSLATE_P (translate))
		{
		  if (multibyte)
		    while (range > lim)
		      {
			int buf_charlen;

			buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
							 buf_charlen);

			buf_ch = RE_TRANSLATE (translate, buf_ch);
			if (buf_ch >= 0400
			    || fastmap[buf_ch])
			  break;

			range -= buf_charlen;
			d += buf_charlen;
		      }
		  else
		    while (range > lim
			   && !fastmap[(unsigned char)
				       RE_TRANSLATE (translate, (unsigned char) *d)])
		      {
			d++;
			range--;
		      }
		}
	      else
		while (range > lim && !fastmap[(unsigned char) *d])
		  {
		    d++;
		    range--;
		  }

	      startpos += irange - range;
	    }
	  else				/* Searching backwards.	 */
	    {
	      int room = (size1 == 0 || startpos >= size1
			  ? size2 + size1 - startpos
			  : size1 - startpos);

	      buf_ch = STRING_CHAR (d, room);
	      if (RE_TRANSLATE_P (translate))
		buf_ch = RE_TRANSLATE (translate, buf_ch);

	      if (! (buf_ch >= 0400
		     || fastmap[buf_ch]))
		goto advance;
	    }
	}

      /* If can't match the null string, and that's all we have left, fail.  */
      if (range >= 0 && startpos == total_size && fastmap
	  && !bufp->can_be_null)
	return -1;

      val = re_match_2_internal (bufp, string1, size1, string2, size2,
				 startpos, regs, stop);
#ifndef REGEX_MALLOC
#ifdef C_ALLOCA
      alloca (0);
#endif
#endif

      if (val >= 0)
	return startpos;

      if (val == -2)
	return -2;

    advance:
      if (!range)
	break;
      else if (range > 0)
	{
	  /* Update STARTPOS to the next character boundary.  */
	  if (multibyte)
	    {
	      const unsigned char *p
		= (const unsigned char *) POS_ADDR_VSTRING (startpos);
	      const unsigned char *pend
		= (const unsigned char *) STOP_ADDR_VSTRING (startpos);
	      int len = MULTIBYTE_FORM_LENGTH (p, pend - p);

	      range -= len;
	      if (range < 0)
		break;
	      startpos += len;
	    }
	  else
	    {
	      range--;
	      startpos++;
	    }
	}
      else
	{
	  range++;
	  startpos--;

	  /* Update STARTPOS to the previous character boundary.  */
	  if (multibyte)
	    {
	      const unsigned char *p
		= (const unsigned char *) POS_ADDR_VSTRING (startpos);
	      int len = 0;

	      /* Find the head of multibyte form.  */
	      while (!CHAR_HEAD_P (*p))
		p--, len++;

	      /* Adjust it. */
#if 0				/* XXX */
	      if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
		;
	      else
#endif
		{
		  range += len;
		  if (range > 0)
		    break;

		  startpos -= len;
		}
	    }
	}
    }
  return -1;
} /* re_search_2 */

/* Declarations and macros for re_match_2.  */

static int bcmp_translate ();
static boolean alt_match_null_string_p (),
	       common_op_match_null_string_p (),
	       group_match_null_string_p ();

/* This converts PTR, a pointer into one of the search strings `string1'
   and `string2' into an offset from the beginning of that string.  */
#define POINTER_TO_OFFSET(ptr)			\
  (FIRST_STRING_P (ptr)				\
   ? ((regoff_t) ((ptr) - string1))		\
   : ((regoff_t) ((ptr) - string2 + size1)))

/* Macros for dealing with the split strings in re_match_2.  */

#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)

/* Call before fetching a character with *d.  This switches over to
   string2 if necessary.  */
#define PREFETCH()							\
  while (d == dend)							\
    {									\
      /* End of string2 => fail.  */					\
      if (dend == end_match_2)						\
	goto fail;							\
      /* End of string1 => advance to string2.	*/			\
      d = string2;							\
      dend = end_match_2;						\
    }


/* Test if at very beginning or at very end of the virtual concatenation
   of `string1' and `string2'.	If only one string, it's `string2'.  */
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
#define AT_STRINGS_END(d) ((d) == end2)


/* Test if D points to a character which is word-constituent.  We have
   two special cases to check for: if past the end of string1, look at
   the first character in string2; and if before the beginning of
   string2, look at the last character in string1.  */
#define WORDCHAR_P(d)							\
  (SYNTAX ((d) == end1 ? *string2					\
	   : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
   == Sword)

/* Disabled due to a compiler bug -- see comment at case wordbound */

/* The comment at case wordbound is following one, but we don't use
   AT_WORD_BOUNDARY anymore to support multibyte form.

   The DEC Alpha C compiler 3.x generates incorrect code for the
   test	 WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
   AT_WORD_BOUNDARY, so this code is disabled.	Expanding the
   macro and introducing temporary variables works around the bug.  */

#if 0
/* Test if the character before D and the one at D differ with respect
   to being word-constituent.  */
#define AT_WORD_BOUNDARY(d)						\
  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
#endif

/* Free everything we malloc.  */
#ifdef MATCH_MAY_ALLOCATE
#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
#define FREE_VARIABLES()						\
  do {									\
    REGEX_FREE_STACK (fail_stack.stack);				\
    FREE_VAR (regstart);						\
    FREE_VAR (regend);							\
    FREE_VAR (old_regstart);						\
    FREE_VAR (old_regend);						\
    FREE_VAR (best_regstart);						\
    FREE_VAR (best_regend);						\
    FREE_VAR (reg_info);						\
    FREE_VAR (reg_dummy);						\
    FREE_VAR (reg_info_dummy);						\
  } while (0)
#else
#define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
#endif /* not MATCH_MAY_ALLOCATE */

/* These values must meet several constraints.	They must not be valid
   register values; since we have a limit of 255 registers (because
   we use only one byte in the pattern for the register number), we can
   use numbers larger than 255.	 They must differ by 1, because of
   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
   be larger than the value for the highest register, so we do not try
   to actually save any registers when none are active.	 */
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)

/* Matching routines.  */

#ifndef emacs	/* Emacs never uses this.  */
/* re_match is like re_match_2 except it takes only a single string.  */

int
re_match (bufp, string, size, pos, regs)
     struct re_pattern_buffer *bufp;
     const char *string;
     int size, pos;
     struct re_registers *regs;
{
  int result = re_match_2_internal (bufp, NULL, 0, string, size,
				    pos, regs, size);
  alloca (0);
  return result;
}
#endif /* not emacs */

#ifdef emacs
/* In Emacs, this is the string or buffer in which we
   are matching.  It is used for looking up syntax properties.	*/
Lisp_Object re_match_object;
#endif

/* re_match_2 matches the compiled pattern in BUFP against the
   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
   and SIZE2, respectively).  We start matching at POS, and stop
   matching at STOP.

   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
   store offsets for the substring each group matched in REGS.	See the
   documentation for exactly how many groups we fill.

   We return -1 if no match, -2 if an internal error (such as the
   failure stack overflowing).	Otherwise, we return the length of the
   matched substring.  */

int
re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
     struct re_pattern_buffer *bufp;
     const char *string1, *string2;
     int size1, size2;
     int pos;
     struct re_registers *regs;
     int stop;
{
  int result;

#ifdef emacs
  int charpos;
  int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
  gl_state.object = re_match_object;
  charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos + adjpos);
  SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
#endif

  result = re_match_2_internal (bufp, string1, size1, string2, size2,
				pos, regs, stop);
  alloca (0);
  return result;
}

/* This is a separate function so that we can force an alloca cleanup
   afterwards.	*/
static int
re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
     struct re_pattern_buffer *bufp;
     const char *string1, *string2;
     int size1, size2;
     int pos;
     struct re_registers *regs;
     int stop;
{
  /* General temporaries.  */
  int mcnt;
  unsigned char *p1;

  /* Just past the end of the corresponding string.  */
  const char *end1, *end2;

  /* Pointers into string1 and string2, just past the last characters in
     each to consider matching.	 */
  const char *end_match_1, *end_match_2;

  /* Where we are in the data, and the end of the current string.  */
  const char *d, *dend;

  /* Where we are in the pattern, and the end of the pattern.  */
  unsigned char *p = bufp->buffer;
  register unsigned char *pend = p + bufp->used;

  /* Mark the opcode just after a start_memory, so we can test for an
     empty subpattern when we get to the stop_memory.  */
  unsigned char *just_past_start_mem = 0;

  /* We use this to map every character in the string.	*/
  RE_TRANSLATE_TYPE translate = bufp->translate;

  /* Nonzero if we have to concern multibyte character.	 */
  int multibyte = bufp->multibyte;

  /* Failure point stack.  Each place that can handle a failure further
     down the line pushes a failure point on this stack.  It consists of
     restart, regend, and reg_info for all registers corresponding to
     the subexpressions we're currently inside, plus the number of such
     registers, and, finally, two char *'s.  The first char * is where
     to resume scanning the pattern; the second one is where to resume
     scanning the strings.  If the latter is zero, the failure point is
     a ``dummy''; if a failure happens and the failure point is a dummy,
     it gets discarded and the next next one is tried.	*/
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
  fail_stack_type fail_stack;
#endif
#ifdef DEBUG
  static unsigned failure_id = 0;
  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
#endif

  /* This holds the pointer to the failure stack, when
     it is allocated relocatably.  */
  fail_stack_elt_t *failure_stack_ptr;

  /* We fill all the registers internally, independent of what we
     return, for use in backreferences.	 The number here includes
     an element for register zero.  */
  unsigned num_regs = bufp->re_nsub + 1;

  /* The currently active registers.  */
  unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
  unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;

  /* Information on the contents of registers. These are pointers into
     the input strings; they record just what was matched (on this
     attempt) by a subexpression part of the pattern, that is, the
     regnum-th regstart pointer points to where in the pattern we began
     matching and the regnum-th regend points to right after where we
     stopped matching the regnum-th subexpression.  (The zeroth register
     keeps track of what the whole pattern matches.)  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
  const char **regstart, **regend;
#endif

  /* If a group that's operated upon by a repetition operator fails to
     match anything, then the register for its start will need to be
     restored because it will have been set to wherever in the string we
     are when we last see its open-group operator.  Similarly for a
     register's end.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
  const char **old_regstart, **old_regend;
#endif

  /* The is_active field of reg_info helps us keep track of which (possibly
     nested) subexpressions we are currently in. The matched_something
     field of reg_info[reg_num] helps us tell whether or not we have
     matched any of the pattern so far this time through the reg_num-th
     subexpression.  These two fields get reset each time through any
     loop their register is in.	 */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.	 */
  register_info_type *reg_info;
#endif

  /* The following record the register info as found in the above
     variables when we find a match better than any we've seen before.
     This happens as we backtrack through the failure points, which in
     turn happens only if we have not yet matched the entire string. */
  unsigned best_regs_set = false;
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
  const char **best_regstart, **best_regend;
#endif

  /* Logically, this is `best_regend[0]'.  But we don't want to have to
     allocate space for that if we're not allocating space for anything
     else (see below).	Also, we never need info about register 0 for
     any of the other register vectors, and it seems rather a kludge to
     treat `best_regend' differently than the rest.  So we keep track of
     the end of the best match so far in a separate variable.  We
     initialize this to NULL so that when we backtrack the first time
     and need to test it, it's not garbage.  */
  const char *match_end = NULL;

  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
  int set_regs_matched_done = 0;

  /* Used when we pop values we don't care about.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
  const char **reg_dummy;
  register_info_type *reg_info_dummy;
#endif

#ifdef DEBUG
  /* Counts the total number of registers pushed.  */
  unsigned num_regs_pushed = 0;
#endif

  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");

  INIT_FAIL_STACK ();

#ifdef MATCH_MAY_ALLOCATE
  /* Do not bother to initialize all the register variables if there are
     no groups in the pattern, as it takes a fair amount of time.  If
     there are groups, we include space for register 0 (the whole
     pattern), even though we never use it, since it simplifies the
     array indexing.  We should fix this.  */
  if (bufp->re_nsub)
    {
      regstart = REGEX_TALLOC (num_regs, const char *);
      regend = REGEX_TALLOC (num_regs, const char *);
      old_regstart = REGEX_TALLOC (num_regs, const char *);
      old_regend = REGEX_TALLOC (num_regs, const char *);
      best_regstart = REGEX_TALLOC (num_regs, const char *);
      best_regend = REGEX_TALLOC (num_regs, const char *);
      reg_info = REGEX_TALLOC (num_regs, register_info_type);
      reg_dummy = REGEX_TALLOC (num_regs, const char *);
      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);

      if (!(regstart && regend && old_regstart && old_regend && reg_info
	    && best_regstart && best_regend && reg_dummy && reg_info_dummy))
	{
	  FREE_VARIABLES ();
	  return -2;
	}
    }
  else
    {
      /* We must initialize all our variables to NULL, so that
	 `FREE_VARIABLES' doesn't try to free them.  */
      regstart = regend = old_regstart = old_regend = best_regstart
	= best_regend = reg_dummy = NULL;
      reg_info = reg_info_dummy = (register_info_type *) NULL;
    }
#endif /* MATCH_MAY_ALLOCATE */

  /* The starting position is bogus.  */
  if (pos < 0 || pos > size1 + size2)
    {
      FREE_VARIABLES ();
      return -1;
    }

  /* Initialize subexpression text positions to -1 to mark ones that no
     start_memory/stop_memory has been seen for. Also initialize the
     register information struct.  */
  for (mcnt = 1; mcnt < num_regs; mcnt++)
    {
      regstart[mcnt] = regend[mcnt]
	= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;

      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
      IS_ACTIVE (reg_info[mcnt]) = 0;
      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
    }

  /* We move `string1' into `string2' if the latter's empty -- but not if
     `string1' is null.	 */
  if (size2 == 0 && string1 != NULL)
    {
      string2 = string1;
      size2 = size1;
      string1 = 0;
      size1 = 0;
    }
  end1 = string1 + size1;
  end2 = string2 + size2;

  /* Compute where to stop matching, within the two strings.  */
  if (stop <= size1)
    {
      end_match_1 = string1 + stop;
      end_match_2 = string2;
    }
  else
    {
      end_match_1 = end1;
      end_match_2 = string2 + stop - size1;
    }

  /* `p' scans through the pattern as `d' scans through the data.
     `dend' is the end of the input string that `d' points within.  `d'
     is advanced into the following input string whenever necessary, but
     this happens before fetching; therefore, at the beginning of the
     loop, `d' can be pointing at the end of a string, but it cannot
     equal `string2'.  */
  if (size1 > 0 && pos <= size1)
    {
      d = string1 + pos;
      dend = end_match_1;
    }
  else
    {
      d = string2 + pos - size1;
      dend = end_match_2;
    }

  DEBUG_PRINT1 ("The compiled pattern is: ");
  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
  DEBUG_PRINT1 ("The string to match is: `");
  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
  DEBUG_PRINT1 ("'\n");

  /* This loops over pattern commands.	It exits by returning from the
     function if the match is complete, or it drops through if the match
     fails at this starting point in the input data.  */
  for (;;)
    {
      DEBUG_PRINT2 ("\n0x%x: ", p);

      if (p == pend)
	{ /* End of pattern means we might have succeeded.  */
	  DEBUG_PRINT1 ("end of pattern ... ");

	  /* If we haven't matched the entire string, and we want the
	     longest match, try backtracking.  */
	  if (d != end_match_2)
	    {
	      /* 1 if this match ends in the same string (string1 or string2)
		 as the best previous match.  */
	      boolean same_str_p = (FIRST_STRING_P (match_end)
				    == MATCHING_IN_FIRST_STRING);
	      /* 1 if this match is the best seen so far.  */
	      boolean best_match_p;

	      /* AIX compiler got confused when this was combined
		 with the previous declaration.	 */
	      if (same_str_p)
		best_match_p = d > match_end;
	      else
		best_match_p = !MATCHING_IN_FIRST_STRING;

	      DEBUG_PRINT1 ("backtracking.\n");

	      if (!FAIL_STACK_EMPTY ())
		{ /* More failure points to try.  */

		  /* If exceeds best match so far, save it.  */
		  if (!best_regs_set || best_match_p)
		    {
		      best_regs_set = true;
		      match_end = d;

		      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");

		      for (mcnt = 1; mcnt < num_regs; mcnt++)
			{
			  best_regstart[mcnt] = regstart[mcnt];
			  best_regend[mcnt] = regend[mcnt];
			}
		    }
		  goto fail;
		}

	      /* If no failure points, don't restore garbage.  And if
		 last match is real best match, don't restore second
		 best one. */
	      else if (best_regs_set && !best_match_p)
		{
		restore_best_regs:
		  /* Restore best match.  It may happen that `dend ==
		     end_match_1' while the restored d is in string2.
		     For example, the pattern `x.*y.*z' against the
		     strings `x-' and `y-z-', if the two strings are
		     not consecutive in memory.	 */
		  DEBUG_PRINT1 ("Restoring best registers.\n");

		  d = match_end;
		  dend = ((d >= string1 && d <= end1)
			   ? end_match_1 : end_match_2);

		  for (mcnt = 1; mcnt < num_regs; mcnt++)
		    {
		      regstart[mcnt] = best_regstart[mcnt];
		      regend[mcnt] = best_regend[mcnt];
		    }
		}
	    } /* d != end_match_2 */

	succeed_label:
	  DEBUG_PRINT1 ("Accepting match.\n");

	  /* If caller wants register contents data back, do it.  */
	  if (regs && !bufp->no_sub)
	    {
	      /* Have the register data arrays been allocated?	*/
	      if (bufp->regs_allocated == REGS_UNALLOCATED)
		{ /* No.  So allocate them with malloc.	 We need one
		     extra element beyond `num_regs' for the `-1' marker
		     GNU code uses.  */
		  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
		  regs->start = TALLOC (regs->num_regs, regoff_t);
		  regs->end = TALLOC (regs->num_regs, regoff_t);
		  if (regs->start == NULL || regs->end == NULL)
		    {
		      FREE_VARIABLES ();
		      return -2;
		    }
		  bufp->regs_allocated = REGS_REALLOCATE;
		}
	      else if (bufp->regs_allocated == REGS_REALLOCATE)
		{ /* Yes.  If we need more elements than were already
		     allocated, reallocate them.  If we need fewer, just
		     leave it alone.  */
		  if (regs->num_regs < num_regs + 1)
		    {
		      regs->num_regs = num_regs + 1;
		      RETALLOC (regs->start, regs->num_regs, regoff_t);
		      RETALLOC (regs->end, regs->num_regs, regoff_t);
		      if (regs->start == NULL || regs->end == NULL)
			{
			  FREE_VARIABLES ();
			  return -2;
			}
		    }
		}
	      else
		{
		  /* These braces fend off a "empty body in an else-statement"
		     warning under GCC when assert expands to nothing.	*/
		  assert (bufp->regs_allocated == REGS_FIXED);
		}

	      /* Convert the pointer data in `regstart' and `regend' to
		 indices.  Register zero has to be set differently,
		 since we haven't kept track of any info for it.  */
	      if (regs->num_regs > 0)
		{
		  regs->start[0] = pos;
		  regs->end[0] = (MATCHING_IN_FIRST_STRING
				  ? ((regoff_t) (d - string1))
				  : ((regoff_t) (d - string2 + size1)));
		}

	      /* Go through the first `min (num_regs, regs->num_regs)'
		 registers, since that is all we initialized.  */
	      for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
		{
		  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
		    regs->start[mcnt] = regs->end[mcnt] = -1;
		  else
		    {
		      regs->start[mcnt]
			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
		      regs->end[mcnt]
			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
		    }
		}

	      /* If the regs structure we return has more elements than
		 were in the pattern, set the extra elements to -1.  If
		 we (re)allocated the registers, this is the case,
		 because we always allocate enough to have at least one
		 -1 at the end.	 */
	      for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
		regs->start[mcnt] = regs->end[mcnt] = -1;
	    } /* regs && !bufp->no_sub */

	  DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
			nfailure_points_pushed, nfailure_points_popped,
			nfailure_points_pushed - nfailure_points_popped);
	  DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);

	  mcnt = d - pos - (MATCHING_IN_FIRST_STRING
			    ? string1
			    : string2 - size1);

	  DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);

	  FREE_VARIABLES ();
	  return mcnt;
	}

      /* Otherwise match next pattern command.	*/
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
	{
	/* Ignore these.  Used to ignore the n of succeed_n's which
	   currently have n == 0.  */
	case no_op:
	  DEBUG_PRINT1 ("EXECUTING no_op.\n");
	  break;

	case succeed:
	  DEBUG_PRINT1 ("EXECUTING succeed.\n");
	  goto succeed_label;

	/* Match the next n pattern characters exactly.	 The following
	   byte in the pattern defines n, and the n bytes after that
	   are the characters to match.	 */
	case exactn:
	  mcnt = *p++;
	  DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);

	  /* This is written out as an if-else so we don't waste time
	     testing `translate' inside the loop.  */
	  if (RE_TRANSLATE_P (translate))
	    {
#ifdef emacs
	      if (multibyte)
		do
		  {
		    int pat_charlen, buf_charlen;
		    unsigned int pat_ch, buf_ch;

		    PREFETCH ();
		    pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
		    buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);

		    if (RE_TRANSLATE (translate, buf_ch)
			!= pat_ch)
		      goto fail;

		    p += pat_charlen;
		    d += buf_charlen;
		    mcnt -= pat_charlen;
		  }
		while (mcnt > 0);
	      else
#endif /* not emacs */
		do
		  {
		    PREFETCH ();
		    if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d)
			!= (unsigned char) *p++)
		      goto fail;
		    d++;
		  }
		while (--mcnt);
	    }
	  else
	    {
	      do
		{
		  PREFETCH ();
		  if (*d++ != (char) *p++) goto fail;
		}
	      while (--mcnt);
	    }
	  SET_REGS_MATCHED ();
	  break;


	/* Match any character except possibly a newline or a null.  */
	case anychar:
	  {
	    int buf_charlen;
	    unsigned int buf_ch;

	    DEBUG_PRINT1 ("EXECUTING anychar.\n");

	    PREFETCH ();

#ifdef emacs
	    if (multibyte)
	      buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
	    else
#endif /* not emacs */
	      {
		buf_ch = (unsigned char) *d;
		buf_charlen = 1;
	      }

	    buf_ch = TRANSLATE (buf_ch);

	    if ((!(bufp->syntax & RE_DOT_NEWLINE)
		 && buf_ch == '\n')
		|| ((bufp->syntax & RE_DOT_NOT_NULL)
		    && buf_ch == '\000'))
	      goto fail;

	    SET_REGS_MATCHED ();
	    DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
	    d += buf_charlen;
	  }
	  break;


	case charset:
	case charset_not:
	  {
	    register unsigned int c;
	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
	    int len;

	    /* Start of actual range_table, or end of bitmap if there is no
	       range table.  */
	    unsigned char *range_table;

	    /* Nonzero if there is range table.	 */
	    int range_table_exists;

	    /* Number of ranges of range table.	 Not in bytes.	*/
	    int count;

	    DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");

	    PREFETCH ();
	    c = (unsigned char) *d;

	    range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap.  */
	    range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
	    if (range_table_exists)
	      EXTRACT_NUMBER_AND_INCR (count, range_table);
	    else
	      count = 0;

	    if (multibyte && BASE_LEADING_CODE_P (c))
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);

	    if (SINGLE_BYTE_CHAR_P (c))
	      {			/* Lookup bitmap.  */
		c = TRANSLATE (c); /* The character to match.  */
		len = 1;

		/* Cast to `unsigned' instead of `unsigned char' in
		   case the bit list is a full 32 bytes long.  */
		if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
	      not = !not;
	      }
	    else if (range_table_exists)
	      CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);

	    p = CHARSET_RANGE_TABLE_END (range_table, count);

	    if (!not) goto fail;

	    SET_REGS_MATCHED ();
	    d += len;
	    break;
	  }


	/* The beginning of a group is represented by start_memory.
	   The arguments are the register number in the next byte, and the
	   number of groups inner to this one in the next.  The text
	   matched within the group is recorded (in the internal
	   registers data structure) under the register number.	 */
	case start_memory:
	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);

	  /* Find out if this group can match the empty string.	 */
	  p1 = p;		/* To send to group_match_null_string_p.  */

	  if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
	    REG_MATCH_NULL_STRING_P (reg_info[*p])
	      = group_match_null_string_p (&p1, pend, reg_info);

	  /* Save the position in the string where we were the last time
	     we were at this open-group operator in case the group is
	     operated upon by a repetition operator, e.g., with `(a*)*b'
	     against `ab'; then we want to ignore where we are now in
	     the string in case this attempt to match fails.  */
	  old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
			     ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
			     : regstart[*p];
	  DEBUG_PRINT2 ("  old_regstart: %d\n",
			 POINTER_TO_OFFSET (old_regstart[*p]));

	  regstart[*p] = d;
	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));

	  IS_ACTIVE (reg_info[*p]) = 1;
	  MATCHED_SOMETHING (reg_info[*p]) = 0;

	  /* Clear this whenever we change the register activity status.  */
	  set_regs_matched_done = 0;

	  /* This is the new highest active register.  */
	  highest_active_reg = *p;

	  /* If nothing was active before, this is the new lowest active
	     register.	*/
	  if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
	    lowest_active_reg = *p;

	  /* Move past the register number and inner group count.  */
	  p += 2;
	  just_past_start_mem = p;

	  break;


	/* The stop_memory opcode represents the end of a group.  Its
	   arguments are the same as start_memory's: the register
	   number, and the number of inner groups.  */
	case stop_memory:
	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);

	  /* We need to save the string position the last time we were at
	     this close-group operator in case the group is operated
	     upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
	     against `aba'; then we want to ignore where we are now in
	     the string in case this attempt to match fails.  */
	  old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
			   ? REG_UNSET (regend[*p]) ? d : regend[*p]
			   : regend[*p];
	  DEBUG_PRINT2 ("      old_regend: %d\n",
			 POINTER_TO_OFFSET (old_regend[*p]));

	  regend[*p] = d;
	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));

	  /* This register isn't active anymore.  */
	  IS_ACTIVE (reg_info[*p]) = 0;

	  /* Clear this whenever we change the register activity status.  */
	  set_regs_matched_done = 0;

	  /* If this was the only register active, nothing is active
	     anymore.  */
	  if (lowest_active_reg == highest_active_reg)
	    {
	      lowest_active_reg = NO_LOWEST_ACTIVE_REG;
	      highest_active_reg = NO_HIGHEST_ACTIVE_REG;
	    }
	  else
	    { /* We must scan for the new highest active register, since
		 it isn't necessarily one less than now: consider
		 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
		 new highest active register is 1.  */
	      unsigned char r = *p - 1;
	      while (r > 0 && !IS_ACTIVE (reg_info[r]))
		r--;

	      /* If we end up at register zero, that means that we saved
		 the registers as the result of an `on_failure_jump', not
		 a `start_memory', and we jumped to past the innermost
		 `stop_memory'.	 For example, in ((.)*) we save
		 registers 1 and 2 as a result of the *, but when we pop
		 back to the second ), we are at the stop_memory 1.
		 Thus, nothing is active.  */
	      if (r == 0)
		{
		  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
		  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
		}
	      else
		highest_active_reg = r;
	    }

	  /* If just failed to match something this time around with a
	     group that's operated on by a repetition operator, try to
	     force exit from the ``loop'', and restore the register
	     information for this group that we had before trying this
	     last match.  */
	  if ((!MATCHED_SOMETHING (reg_info[*p])
	       || just_past_start_mem == p - 1)
	      && (p + 2) < pend)
	    {
	      boolean is_a_jump_n = false;

	      p1 = p + 2;
	      mcnt = 0;
	      switch ((re_opcode_t) *p1++)
		{
		  case jump_n:
		    is_a_jump_n = true;
		  case pop_failure_jump:
		  case maybe_pop_jump:
		  case jump:
		  case dummy_failure_jump:
		    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
		    if (is_a_jump_n)
		      p1 += 2;
		    break;

		  default:
		    /* do nothing */ ;
		}
	      p1 += mcnt;

	      /* If the next operation is a jump backwards in the pattern
		 to an on_failure_jump right before the start_memory
		 corresponding to this stop_memory, exit from the loop
		 by forcing a failure after pushing on the stack the
		 on_failure_jump's jump in the pattern, and d.	*/
	      if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
		  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
		{
		  /* If this group ever matched anything, then restore
		     what its registers were before trying this last
		     failed match, e.g., with `(a*)*b' against `ab' for
		     regstart[1], and, e.g., with `((a*)*(b*)*)*'
		     against `aba' for regend[3].

		     Also restore the registers for inner groups for,
		     e.g., `((a*)(b*))*' against `aba' (register 3 would
		     otherwise get trashed).  */

		  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
		    {
		      unsigned r;

		      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;

		      /* Restore this and inner groups' (if any) registers.  */
		      for (r = *p; r < *p + *(p + 1); r++)
			{
			  regstart[r] = old_regstart[r];

			  /* xx why this test?	*/
			  if (old_regend[r] >= regstart[r])
			    regend[r] = old_regend[r];
			}
		    }
		  p1++;
		  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
		  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);

		  goto fail;
		}
	    }

	  /* Move past the register number and the inner group count.  */
	  p += 2;
	  break;


	/* \<digit> has been turned into a `duplicate' command which is
	   followed by the numeric value of <digit> as the register number.  */
	case duplicate:
	  {
	    register const char *d2, *dend2;
	    int regno = *p++;	/* Get which register to match against.	 */
	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);

	    /* Can't back reference a group which we've never matched.	*/
	    if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
	      goto fail;

	    /* Where in input to try to start matching.	 */
	    d2 = regstart[regno];

	    /* Where to stop matching; if both the place to start and
	       the place to stop matching are in the same string, then
	       set to the place to stop, otherwise, for now have to use
	       the end of the first string.  */

	    dend2 = ((FIRST_STRING_P (regstart[regno])
		      == FIRST_STRING_P (regend[regno]))
		     ? regend[regno] : end_match_1);
	    for (;;)
	      {
		/* If necessary, advance to next segment in register
		   contents.  */
		while (d2 == dend2)
		  {
		    if (dend2 == end_match_2) break;
		    if (dend2 == regend[regno]) break;

		    /* End of string1 => advance to string2. */
		    d2 = string2;
		    dend2 = regend[regno];
		  }
		/* At end of register contents => success */
		if (d2 == dend2) break;

		/* If necessary, advance to next segment in data.  */
		PREFETCH ();

		/* How many characters left in this segment to match.  */
		mcnt = dend - d;

		/* Want how many consecutive characters we can match in
		   one shot, so, if necessary, adjust the count.  */
		if (mcnt > dend2 - d2)
		  mcnt = dend2 - d2;

		/* Compare that many; failure if mismatch, else move
		   past them.  */
		if (RE_TRANSLATE_P (translate)
		    ? bcmp_translate (d, d2, mcnt, translate)
		    : bcmp (d, d2, mcnt))
		  goto fail;
		d += mcnt, d2 += mcnt;

		/* Do this because we've match some characters.	 */
		SET_REGS_MATCHED ();
	      }
	  }
	  break;


	/* begline matches the empty string at the beginning of the string
	   (unless `not_bol' is set in `bufp'), and, if
	   `newline_anchor' is set, after newlines.  */
	case begline:
	  DEBUG_PRINT1 ("EXECUTING begline.\n");

	  if (AT_STRINGS_BEG (d))
	    {
	      if (!bufp->not_bol) break;
	    }
	  else if (d[-1] == '\n' && bufp->newline_anchor)
	    {
	      break;
	    }
	  /* In all other cases, we fail.  */
	  goto fail;


	/* endline is the dual of begline.  */
	case endline:
	  DEBUG_PRINT1 ("EXECUTING endline.\n");

	  if (AT_STRINGS_END (d))
	    {
	      if (!bufp->not_eol) break;
	    }

	  /* We have to ``prefetch'' the next character.  */
	  else if ((d == end1 ? *string2 : *d) == '\n'
		   && bufp->newline_anchor)
	    {
	      break;
	    }
	  goto fail;


	/* Match at the very beginning of the data.  */
	case begbuf:
	  DEBUG_PRINT1 ("EXECUTING begbuf.\n");
	  if (AT_STRINGS_BEG (d))
	    break;
	  goto fail;


	/* Match at the very end of the data.  */
	case endbuf:
	  DEBUG_PRINT1 ("EXECUTING endbuf.\n");
	  if (AT_STRINGS_END (d))
	    break;
	  goto fail;


	/* on_failure_keep_string_jump is used to optimize `.*\n'.  It
	   pushes NULL as the value for the string on the stack.  Then
	   `pop_failure_point' will keep the current value for the
	   string, instead of restoring it.  To see why, consider
	   matching `foo\nbar' against `.*\n'.	The .* matches the foo;
	   then the . fails against the \n.  But the next thing we want
	   to do is match the \n against the \n; if we restored the
	   string value, we would be back at the foo.

	   Because this is used only in specific cases, we don't need to
	   check all the things that `on_failure_jump' does, to make
	   sure the right things get saved on the stack.  Hence we don't
	   share its code.  The only reason to push anything on the
	   stack at all is that otherwise we would have to change
	   `anychar's code to do something besides goto fail in this
	   case; that seems worse than this.  */
	case on_failure_keep_string_jump:
	  DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");

	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
	  DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);

	  PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
	  break;


	/* Uses of on_failure_jump:

	   Each alternative starts with an on_failure_jump that points
	   to the beginning of the next alternative.  Each alternative
	   except the last ends with a jump that in effect jumps past
	   the rest of the alternatives.  (They really jump to the
	   ending jump of the following alternative, because tensioning
	   these jumps is a hassle.)

	   Repeats start with an on_failure_jump that points past both
	   the repetition text and either the following jump or
	   pop_failure_jump back to this on_failure_jump.  */
	case on_failure_jump:
	on_failure:
	  DEBUG_PRINT1 ("EXECUTING on_failure_jump");

#if defined (WINDOWSNT) && defined (emacs)
	  QUIT;
#endif

	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
	  DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);

	  /* If this on_failure_jump comes right before a group (i.e.,
	     the original * applied to a group), save the information
	     for that group and all inner ones, so that if we fail back
	     to this point, the group's information will be correct.
	     For example, in \(a*\)*\1, we need the preceding group,
	     and in \(zz\(a*\)b*\)\2, we need the inner group.	*/

	  /* We can't use `p' to check ahead because we push
	     a failure point to `p + mcnt' after we do this.  */
	  p1 = p;

	  /* We need to skip no_op's before we look for the
	     start_memory in case this on_failure_jump is happening as
	     the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
	     against aba.  */
	  while (p1 < pend && (re_opcode_t) *p1 == no_op)
	    p1++;

	  if (p1 < pend && (re_opcode_t) *p1 == start_memory)
	    {
	      /* We have a new highest active register now.  This will
		 get reset at the start_memory we are about to get to,
		 but we will have saved all the registers relevant to
		 this repetition op, as described above.  */
	      highest_active_reg = *(p1 + 1) + *(p1 + 2);
	      if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
		lowest_active_reg = *(p1 + 1);
	    }

	  DEBUG_PRINT1 (":\n");
	  PUSH_FAILURE_POINT (p + mcnt, d, -2);
	  break;


	/* A smart repeat ends with `maybe_pop_jump'.
	   We change it to either `pop_failure_jump' or `jump'.	 */
	case maybe_pop_jump:
#if defined (WINDOWSNT) && defined (emacs)
	  QUIT;
#endif
	  EXTRACT_NUMBER_AND_INCR (mcnt, p);
	  DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
	  {
	    register unsigned char *p2 = p;

	    /* Compare the beginning of the repeat with what in the
	       pattern follows its end. If we can establish that there
	       is nothing that they would both match, i.e., that we
	       would have to backtrack because of (as in, e.g., `a*a')
	       then we can change to pop_failure_jump, because we'll
	       never have to backtrack.

	       This is not true in the case of alternatives: in
	       `(a|ab)*' we do need to backtrack to the `ab' alternative
	       (e.g., if the string was `ab').	But instead of trying to
	       detect that here, the alternative has put on a dummy
	       failure point which is what we will end up popping.  */

	    /* Skip over open/close-group commands.
	       If what follows this loop is a ...+ construct,
	       look at what begins its body, since we will have to
	       match at least one of that.  */
	    while (1)
	      {
		if (p2 + 2 < pend
		    && ((re_opcode_t) *p2 == stop_memory
			|| (re_opcode_t) *p2 == start_memory))
		  p2 += 3;
		else if (p2 + 6 < pend
			 && (re_opcode_t) *p2 == dummy_failure_jump)
		  p2 += 6;
		else
		  break;
	      }

	    p1 = p + mcnt;
	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
	       to the `maybe_finalize_jump' of this case.  Examine what
	       follows.	 */

	    /* If we're at the end of the pattern, we can change.  */
	    if (p2 == pend)
	      {
		/* Consider what happens when matching ":\(.*\)"
		   against ":/".  I don't really understand this code
		   yet.	 */
		p[-3] = (unsigned char) pop_failure_jump;
		DEBUG_PRINT1
		  ("  End of pattern: change to `pop_failure_jump'.\n");
	      }

	    else if ((re_opcode_t) *p2 == exactn
		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
	      {
		register unsigned int c
		  = *p2 == (unsigned char) endline ? '\n' : p2[2];

		if ((re_opcode_t) p1[3] == exactn)
		  {
		    if (!(multibyte /* && (c != '\n') */
			  && BASE_LEADING_CODE_P (c))
			? c != p1[5]
			: (STRING_CHAR (&p2[2], pend - &p2[2])
			   != STRING_CHAR (&p1[5], pend - &p1[5])))
		  {
		    p[-3] = (unsigned char) pop_failure_jump;
		    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
				  c, p1[5]);
		  }
		  }

		else if ((re_opcode_t) p1[3] == charset
			 || (re_opcode_t) p1[3] == charset_not)
		  {
		    int not = (re_opcode_t) p1[3] == charset_not;

		    if (multibyte /* && (c != '\n') */
			&& BASE_LEADING_CODE_P (c))
		      c = STRING_CHAR (&p2[2], pend - &p2[2]);

		    /* Test if C is listed in charset (or charset_not)
		       at `&p1[3]'.  */
		    if (SINGLE_BYTE_CHAR_P (c))
		      {
			if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
		      not = !not;
		      }
		    else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
		      CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);

		    /* `not' is equal to 1 if c would match, which means
			that we can't change to pop_failure_jump.  */
		    if (!not)
		      {
			p[-3] = (unsigned char) pop_failure_jump;
			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
		      }
		  }
	      }
	    else if ((re_opcode_t) *p2 == charset)
	      {
		if ((re_opcode_t) p1[3] == exactn)
		  {
		    register unsigned int c = p1[5];
		    int not = 0;

		    if (multibyte && BASE_LEADING_CODE_P (c))
		      c = STRING_CHAR (&p1[5], pend - &p1[5]);

		    /* Test if C is listed in charset at `p2'.	*/
		    if (SINGLE_BYTE_CHAR_P (c))
		      {
			if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
			    && (p2[2 + c / BYTEWIDTH]
				& (1 << (c % BYTEWIDTH))))
			  not = !not;
		      }
		    else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
		      CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);

		    if (!not)
		  {
		    p[-3] = (unsigned char) pop_failure_jump;
			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
		      }
		  }

		/* It is hard to list up all the character in charset
		   P2 if it includes multibyte character.  Give up in
		   such case.  */
		else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
		  {
		    /* Now, we are sure that P2 has no range table.
		       So, for the size of bitmap in P2, `p2[1]' is
		       enough.	But P1 may have range table, so the
		       size of bitmap table of P1 is extracted by
		       using macro `CHARSET_BITMAP_SIZE'.

		       Since we know that all the character listed in
		       P2 is ASCII, it is enough to test only bitmap
		       table of P1.  */

		    if ((re_opcode_t) p1[3] == charset_not)
		  {
		    int idx;
			/* We win if the charset_not inside the loop lists
			   every character listed in the charset after.	 */
		    for (idx = 0; idx < (int) p2[1]; idx++)
		      if (! (p2[2 + idx] == 0
				 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
			break;

		    if (idx == p2[1])
		      {
			p[-3] = (unsigned char) pop_failure_jump;
			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
		      }
		  }
		else if ((re_opcode_t) p1[3] == charset)
		  {
		    int idx;
		    /* We win if the charset inside the loop
		       has no overlap with the one after the loop.  */
		    for (idx = 0;
			     (idx < (int) p2[1]
			      && idx < CHARSET_BITMAP_SIZE (&p1[3]));
			 idx++)
		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
			break;

			if (idx == p2[1]
			    || idx == CHARSET_BITMAP_SIZE (&p1[3]))
		      {
			p[-3] = (unsigned char) pop_failure_jump;
			DEBUG_PRINT1 ("	 No match => pop_failure_jump.\n");
		      }
		  }
	      }
	  }
	  }
	  p -= 2;		/* Point at relative address again.  */
	  if ((re_opcode_t) p[-1] != pop_failure_jump)
	    {
	      p[-1] = (unsigned char) jump;
	      DEBUG_PRINT1 ("  Match => jump.\n");
	      goto unconditional_jump;
	    }
	/* Note fall through.  */


	/* The end of a simple repeat has a pop_failure_jump back to
	   its matching on_failure_jump, where the latter will push a
	   failure point.  The pop_failure_jump takes off failure
	   points put on by this pop_failure_jump's matching
	   on_failure_jump; we got through the pattern to here from the
	   matching on_failure_jump, so didn't fail.  */
	case pop_failure_jump:
	  {
	    /* We need to pass separate storage for the lowest and
	       highest registers, even though we don't care about the
	       actual values.  Otherwise, we will restore only one
	       register from the stack, since lowest will == highest in
	       `pop_failure_point'.  */
	    unsigned dummy_low_reg, dummy_high_reg;
	    unsigned char *pdummy;
	    const char *sdummy;

	    DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
	    POP_FAILURE_POINT (sdummy, pdummy,
			       dummy_low_reg, dummy_high_reg,
			       reg_dummy, reg_dummy, reg_info_dummy);
	  }
	  /* Note fall through.	 */


	/* Unconditionally jump (without popping any failure points).  */
	case jump:
	unconditional_jump:
#if defined (WINDOWSNT) && defined (emacs)
	  QUIT;
#endif
	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
	  DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
	  p += mcnt;				/* Do the jump.	 */
	  DEBUG_PRINT2 ("(to 0x%x).\n", p);
	  break;


	/* We need this opcode so we can detect where alternatives end
	   in `group_match_null_string_p' et al.  */
	case jump_past_alt:
	  DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
	  goto unconditional_jump;


	/* Normally, the on_failure_jump pushes a failure point, which
	   then gets popped at pop_failure_jump.  We will end up at
	   pop_failure_jump, also, and with a pattern of, say, `a+', we
	   are skipping over the on_failure_jump, so we have to push
	   something meaningless for pop_failure_jump to pop.  */
	case dummy_failure_jump:
	  DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
	  /* It doesn't matter what we push for the string here.  What
	     the code at `fail' tests is the value for the pattern.  */
	  PUSH_FAILURE_POINT (0, 0, -2);
	  goto unconditional_jump;


	/* At the end of an alternative, we need to push a dummy failure
	   point in case we are followed by a `pop_failure_jump', because
	   we don't want the failure point for the alternative to be
	   popped.  For example, matching `(a|ab)*' against `aab'
	   requires that we match the `ab' alternative.	 */
	case push_dummy_failure:
	  DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
	  /* See comments just above at `dummy_failure_jump' about the
	     two zeroes.  */
	  PUSH_FAILURE_POINT (0, 0, -2);
	  break;

	/* Have to succeed matching what follows at least n times.
	   After that, handle like `on_failure_jump'.  */
	case succeed_n:
	  EXTRACT_NUMBER (mcnt, p + 2);
	  DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);

	  assert (mcnt >= 0);
	  /* Originally, this is how many times we HAVE to succeed.  */
	  if (mcnt > 0)
	    {
	       mcnt--;
	       p += 2;
	       STORE_NUMBER_AND_INCR (p, mcnt);
	       DEBUG_PRINT3 ("	Setting 0x%x to %d.\n", p, mcnt);
	    }
	  else if (mcnt == 0)
	    {
	      DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
	      p[2] = (unsigned char) no_op;
	      p[3] = (unsigned char) no_op;
	      goto on_failure;
	    }
	  break;

	case jump_n:
	  EXTRACT_NUMBER (mcnt, p + 2);
	  DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);

	  /* Originally, this is how many times we CAN jump.  */
	  if (mcnt)
	    {
	       mcnt--;
	       STORE_NUMBER (p + 2, mcnt);
	       goto unconditional_jump;
	    }
	  /* If don't have to jump any more, skip over the rest of command.  */
	  else
	    p += 4;
	  break;

	case set_number_at:
	  {
	    DEBUG_PRINT1 ("EXECUTING set_number_at.\n");

	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
	    p1 = p + mcnt;
	    EXTRACT_NUMBER_AND_INCR (mcnt, p);
	    DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
	    STORE_NUMBER (p1, mcnt);
	    break;
	  }

	case wordbound:
	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");

	  /* We SUCCEED in one of the following cases: */

	  /* Case 1: D is at the beginning or the end of string.  */
	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
	    break;
	  else
	    {
	      /* C1 is the character before D, S1 is the syntax of C1, C2
		 is the character at D, and S2 is the syntax of C2.  */
	      int c1, c2, s1, s2;
	      int pos1 = PTR_TO_OFFSET (d - 1);
	      int charpos;

	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
#ifdef emacs
	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
	      UPDATE_SYNTAX_TABLE (charpos);
#endif
	      s1 = SYNTAX (c1);
#ifdef emacs
	      UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
#endif
	      s2 = SYNTAX (c2);

	      if (/* Case 2: Only one of S1 and S2 is Sword.  */
		  ((s1 == Sword) != (s2 == Sword))
		  /* Case 3: Both of S1 and S2 are Sword, and macro
		     WORD_BOUNDARY_P (C1, C2) returns nonzero.	*/
		  || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
	    break;
	}
	  goto fail;

      case notwordbound:
	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");

	  /* We FAIL in one of the following cases: */

	  /* Case 1: D is at the beginning or the end of string.  */
	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
	    goto fail;
	  else
	    {
	      /* C1 is the character before D, S1 is the syntax of C1, C2
		 is the character at D, and S2 is the syntax of C2.  */
	      int c1, c2, s1, s2;
	      int pos1 = PTR_TO_OFFSET (d - 1);
	      int charpos;

	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
#ifdef emacs
	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
	      UPDATE_SYNTAX_TABLE (charpos);
#endif
	      s1 = SYNTAX (c1);
#ifdef emacs
	      UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
#endif
	      s2 = SYNTAX (c2);

	      if (/* Case 2: Only one of S1 and S2 is Sword.  */
		  ((s1 == Sword) != (s2 == Sword))
		  /* Case 3: Both of S1 and S2 are Sword, and macro
		     WORD_BOUNDARY_P (C1, C2) returns nonzero.	*/
		  || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
	    goto fail;
	}
	  break;

	case wordbeg:
	  DEBUG_PRINT1 ("EXECUTING wordbeg.\n");

	  /* We FAIL in one of the following cases: */

	  /* Case 1: D is at the end of string.	 */
	  if (AT_STRINGS_END (d))
	  goto fail;
	  else
	    {
	      /* C1 is the character before D, S1 is the syntax of C1, C2
		 is the character at D, and S2 is the syntax of C2.  */
	      int c1, c2, s1, s2;
	      int pos1 = PTR_TO_OFFSET (d);
	      int charpos;

	      GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
#ifdef emacs
	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
	      UPDATE_SYNTAX_TABLE (charpos);
#endif
	      s2 = SYNTAX (c2);
	
	      /* Case 2: S2 is not Sword. */
	      if (s2 != Sword)
		goto fail;

	      /* Case 3: D is not at the beginning of string ... */
	      if (!AT_STRINGS_BEG (d))
		{
		  GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
#ifdef emacs
		  UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
#endif
		  s1 = SYNTAX (c1);

		  /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
		     returns 0.	 */
		  if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
		    goto fail;
		}
	    }
	  break;

	case wordend:
	  DEBUG_PRINT1 ("EXECUTING wordend.\n");

	  /* We FAIL in one of the following cases: */

	  /* Case 1: D is at the beginning of string.  */
	  if (AT_STRINGS_BEG (d))
	    goto fail;
	  else
	    {
	      /* C1 is the character before D, S1 is the syntax of C1, C2
		 is the character at D, and S2 is the syntax of C2.  */
	      int c1, c2, s1, s2;
	      int pos1 = PTR_TO_OFFSET (d);
	      int charpos;

	      GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
#ifdef emacs
	      charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1);
	      UPDATE_SYNTAX_TABLE (charpos);
#endif
	      s1 = SYNTAX (c1);

	      /* Case 2: S1 is not Sword.  */
	      if (s1 != Sword)
		goto fail;

	      /* Case 3: D is not at the end of string ... */
	      if (!AT_STRINGS_END (d))
		{
		  GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
#ifdef emacs
		  UPDATE_SYNTAX_TABLE_FORWARD (charpos);
#endif
		  s2 = SYNTAX (c2);

		  /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
		     returns 0.	 */
		  if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
	  goto fail;
		}
	    }
	  break;

#ifdef emacs
	case before_dot:
	  DEBUG_PRINT1 ("EXECUTING before_dot.\n");
	  if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE)
	    goto fail;
	  break;

	case at_dot:
	  DEBUG_PRINT1 ("EXECUTING at_dot.\n");
	  if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE)
	    goto fail;
	  break;

	case after_dot:
	  DEBUG_PRINT1 ("EXECUTING after_dot.\n");
	  if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE)
	    goto fail;
	  break;

	case syntaxspec:
	  DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
	  mcnt = *p++;
	  goto matchsyntax;

	case wordchar:
	  DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
	  mcnt = (int) Sword;
	matchsyntax:
	  PREFETCH ();
#ifdef emacs
	  {
	    int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
	    UPDATE_SYNTAX_TABLE (pos1);
	  }
#endif
	  {
	    int c, len;

	    if (multibyte)
	      /* we must concern about multibyte form, ... */
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
	    else
	      /* everything should be handled as ASCII, even though it
		 looks like multibyte form.  */
	      c = *d, len = 1;

	    if (SYNTAX (c) != (enum syntaxcode) mcnt)
	    goto fail;
	    d += len;
	  }
	  SET_REGS_MATCHED ();
	  break;

	case notsyntaxspec:
	  DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
	  mcnt = *p++;
	  goto matchnotsyntax;

	case notwordchar:
	  DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
	  mcnt = (int) Sword;
	matchnotsyntax:
	  PREFETCH ();
#ifdef emacs
	  {
	    int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
	    UPDATE_SYNTAX_TABLE (pos1);
	  }
#endif
	  {
	    int c, len;

	    if (multibyte)
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
	    else
	      c = *d, len = 1;

	    if (SYNTAX (c) == (enum syntaxcode) mcnt)
	    goto fail;
	    d += len;
	  }
	  SET_REGS_MATCHED ();
	  break;

	case categoryspec:
	  DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
	  mcnt = *p++;
	  PREFETCH ();
	  {
	    int c, len;

	    if (multibyte)
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
	    else
	      c = *d, len = 1;

	    if (!CHAR_HAS_CATEGORY (c, mcnt))
	      goto fail;
	    d += len;
	  }
	  SET_REGS_MATCHED ();
	  break;

	case notcategoryspec:
	  DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
	  mcnt = *p++;
	  PREFETCH ();
	  {
	    int c, len;

	    if (multibyte)
	      c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
	    else
	      c = *d, len = 1;

	    if (CHAR_HAS_CATEGORY (c, mcnt))
	      goto fail;
	    d += len;
	  }
	  SET_REGS_MATCHED ();
          break;

#else /* not emacs */
	case wordchar:
          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
	  PREFETCH ();
          if (!WORDCHAR_P (d))
            goto fail;
	  SET_REGS_MATCHED ();
          d++;
	  break;

	case notwordchar:
          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
	  PREFETCH ();
	  if (WORDCHAR_P (d))
            goto fail;
          SET_REGS_MATCHED ();
          d++;
	  break;
#endif /* not emacs */

        default:
          abort ();
	}
      continue;  /* Successfully executed one pattern command; keep going.  */


    /* We goto here if a matching operation fails. */
    fail:
#if defined (WINDOWSNT) && defined (emacs)
      QUIT;
#endif
      if (!FAIL_STACK_EMPTY ())
	{ /* A restart point is known.  Restore to that state.  */
          DEBUG_PRINT1 ("\nFAIL:\n");
          POP_FAILURE_POINT (d, p,
                             lowest_active_reg, highest_active_reg,
                             regstart, regend, reg_info);

          /* If this failure point is a dummy, try the next one.  */
          if (!p)
	    goto fail;

          /* If we failed to the end of the pattern, don't examine *p.  */
	  assert (p <= pend);
          if (p < pend)
            {
              boolean is_a_jump_n = false;

              /* If failed to a backwards jump that's part of a repetition
                 loop, need to pop this failure point and use the next one.  */
              switch ((re_opcode_t) *p)
                {
                case jump_n:
                  is_a_jump_n = true;
                case maybe_pop_jump:
                case pop_failure_jump:
                case jump:
                  p1 = p + 1;
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                  p1 += mcnt;

                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
                      || (!is_a_jump_n
                          && (re_opcode_t) *p1 == on_failure_jump))
                    goto fail;
                  break;
                default:
                  /* do nothing */ ;
                }
            }

          if (d >= string1 && d <= end1)
	    dend = end_match_1;
        }
      else
        break;   /* Matching at this starting point really fails.  */
    } /* for (;;) */

  if (best_regs_set)
    goto restore_best_regs;

  FREE_VARIABLES ();

  return -1;         			/* Failure to match.  */
} /* re_match_2 */

/* Subroutine definitions for re_match_2.  */


/* We are passed P pointing to a register number after a start_memory.

   Return true if the pattern up to the corresponding stop_memory can
   match the empty string, and false otherwise.

   If we find the matching stop_memory, sets P to point to one past its number.
   Otherwise, sets P to an undefined byte less than or equal to END.

   We don't handle duplicates properly (yet).  */

static boolean
group_match_null_string_p (p, end, reg_info)
    unsigned char **p, *end;
    register_info_type *reg_info;
{
  int mcnt;
  /* Point to after the args to the start_memory.  */
  unsigned char *p1 = *p + 2;

  while (p1 < end)
    {
      /* Skip over opcodes that can match nothing, and return true or
	 false, as appropriate, when we get to one that can't, or to the
         matching stop_memory.  */

      switch ((re_opcode_t) *p1)
        {
        /* Could be either a loop or a series of alternatives.  */
        case on_failure_jump:
          p1++;
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);

          /* If the next operation is not a jump backwards in the
	     pattern.  */

	  if (mcnt >= 0)
	    {
              /* Go through the on_failure_jumps of the alternatives,
                 seeing if any of the alternatives cannot match nothing.
                 The last alternative starts with only a jump,
                 whereas the rest start with on_failure_jump and end
                 with a jump, e.g., here is the pattern for `a|b|c':

                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
                 /exactn/1/c

                 So, we have to first go through the first (n-1)
                 alternatives and then deal with the last one separately.  */


              /* Deal with the first (n-1) alternatives, which start
                 with an on_failure_jump (see above) that jumps to right
                 past a jump_past_alt.  */

              while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
                {
                  /* `mcnt' holds how many bytes long the alternative
                     is, including the ending `jump_past_alt' and
                     its number.  */

                  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
				                      reg_info))
                    return false;

                  /* Move to right after this alternative, including the
		     jump_past_alt.  */
                  p1 += mcnt;

                  /* Break if it's the beginning of an n-th alternative
                     that doesn't begin with an on_failure_jump.  */
                  if ((re_opcode_t) *p1 != on_failure_jump)
                    break;

		  /* Still have to check that it's not an n-th
		     alternative that starts with an on_failure_jump.  */
		  p1++;
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
                    {
		      /* Get to the beginning of the n-th alternative.  */
                      p1 -= 3;
                      break;
                    }
                }

              /* Deal with the last alternative: go back and get number
                 of the `jump_past_alt' just before it.  `mcnt' contains
                 the length of the alternative.  */
              EXTRACT_NUMBER (mcnt, p1 - 2);

              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
                return false;

              p1 += mcnt;	/* Get past the n-th alternative.  */
            } /* if mcnt > 0 */
          break;


        case stop_memory:
	  assert (p1[1] == **p);
          *p = p1 + 2;
          return true;


        default:
          if (!common_op_match_null_string_p (&p1, end, reg_info))
            return false;
        }
    } /* while p1 < end */

  return false;
} /* group_match_null_string_p */


/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
   It expects P to be the first byte of a single alternative and END one
   byte past the last. The alternative can contain groups.  */

static boolean
alt_match_null_string_p (p, end, reg_info)
    unsigned char *p, *end;
    register_info_type *reg_info;
{
  int mcnt;
  unsigned char *p1 = p;

  while (p1 < end)
    {
      /* Skip over opcodes that can match nothing, and break when we get
         to one that can't.  */

      switch ((re_opcode_t) *p1)
        {
	/* It's a loop.  */
        case on_failure_jump:
          p1++;
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
          p1 += mcnt;
          break;

	default:
          if (!common_op_match_null_string_p (&p1, end, reg_info))
            return false;
        }
    }  /* while p1 < end */

  return true;
} /* alt_match_null_string_p */


/* Deals with the ops common to group_match_null_string_p and
   alt_match_null_string_p.

   Sets P to one after the op and its arguments, if any.  */

static boolean
common_op_match_null_string_p (p, end, reg_info)
    unsigned char **p, *end;
    register_info_type *reg_info;
{
  int mcnt;
  boolean ret;
  int reg_no;
  unsigned char *p1 = *p;

  switch ((re_opcode_t) *p1++)
    {
    case no_op:
    case begline:
    case endline:
    case begbuf:
    case endbuf:
    case wordbeg:
    case wordend:
    case wordbound:
    case notwordbound:
#ifdef emacs
    case before_dot:
    case at_dot:
    case after_dot:
#endif
      break;

    case start_memory:
      reg_no = *p1;
      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
      ret = group_match_null_string_p (&p1, end, reg_info);

      /* Have to set this here in case we're checking a group which
         contains a group and a back reference to it.  */

      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;

      if (!ret)
        return false;
      break;

    /* If this is an optimized succeed_n for zero times, make the jump.  */
    case jump:
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
      if (mcnt >= 0)
        p1 += mcnt;
      else
        return false;
      break;

    case succeed_n:
      /* Get to the number of times to succeed.  */
      p1 += 2;
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);

      if (mcnt == 0)
        {
          p1 -= 4;
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
          p1 += mcnt;
        }
      else
        return false;
      break;

    case duplicate:
      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
        return false;
      break;

    case set_number_at:
      p1 += 4;

    default:
      /* All other opcodes mean we cannot match the empty string.  */
      return false;
  }

  *p = p1;
  return true;
} /* common_op_match_null_string_p */


/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
   bytes; nonzero otherwise.  */

static int
bcmp_translate (s1, s2, len, translate)
     unsigned char *s1, *s2;
     register int len;
     RE_TRANSLATE_TYPE translate;
{
  register unsigned char *p1 = s1, *p2 = s2;
  unsigned char *p1_end = s1 + len;
  unsigned char *p2_end = s2 + len;

  while (p1 != p1_end && p2 != p2_end)
    {
      int p1_charlen, p2_charlen;
      int p1_ch, p2_ch;

      p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
      p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);

      if (RE_TRANSLATE (translate, p1_ch)
	  != RE_TRANSLATE (translate, p2_ch))
	return 1;

      p1 += p1_charlen, p2 += p2_charlen;
    }

  if (p1 != p1_end || p2 != p2_end)
    return 1;

  return 0;
}

/* Entry points for GNU code.  */

/* re_compile_pattern is the GNU regular expression compiler: it
   compiles PATTERN (of length SIZE) and puts the result in BUFP.
   Returns 0 if the pattern was valid, otherwise an error string.

   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
   are set in BUFP on entry.

   We call regex_compile to do the actual compilation.  */

const char *
re_compile_pattern (pattern, length, bufp)
     const char *pattern;
     int length;
     struct re_pattern_buffer *bufp;
{
  reg_errcode_t ret;

  /* GNU code is written to assume at least RE_NREGS registers will be set
     (and at least one extra will be -1).  */
  bufp->regs_allocated = REGS_UNALLOCATED;

  /* And GNU code determines whether or not to get register information
     by passing null for the REGS argument to re_match, etc., not by
     setting no_sub.  */
  bufp->no_sub = 0;

  /* Match anchors at newline.  */
  bufp->newline_anchor = 1;

  ret = regex_compile (pattern, length, re_syntax_options, bufp);

  if (!ret)
    return NULL;
  return gettext (re_error_msgid[(int) ret]);
}

/* Entry points compatible with 4.2 BSD regex library.  We don't define
   them unless specifically requested.  */

#if defined (_REGEX_RE_COMP) || defined (_LIBC)

/* BSD has one and only one pattern buffer.  */
static struct re_pattern_buffer re_comp_buf;

char *
#ifdef _LIBC
/* Make these definitions weak in libc, so POSIX programs can redefine
   these names if they don't use our functions, and still use
   regcomp/regexec below without link errors.  */
weak_function
#endif
re_comp (s)
    const char *s;
{
  reg_errcode_t ret;

  if (!s)
    {
      if (!re_comp_buf.buffer)
	return gettext ("No previous regular expression");
      return 0;
    }

  if (!re_comp_buf.buffer)
    {
      re_comp_buf.buffer = (unsigned char *) malloc (200);
      if (re_comp_buf.buffer == NULL)
        return gettext (re_error_msgid[(int) REG_ESPACE]);
      re_comp_buf.allocated = 200;

      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
      if (re_comp_buf.fastmap == NULL)
	return gettext (re_error_msgid[(int) REG_ESPACE]);
    }

  /* Since `re_exec' always passes NULL for the `regs' argument, we
     don't need to initialize the pattern buffer fields which affect it.  */

  /* Match anchors at newlines.  */
  re_comp_buf.newline_anchor = 1;

  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);

  if (!ret)
    return NULL;

  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
  return (char *) gettext (re_error_msgid[(int) ret]);
}


int
#ifdef _LIBC
weak_function
#endif
re_exec (s)
    const char *s;
{
  const int len = strlen (s);
  return
    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
}
#endif /* _REGEX_RE_COMP */

/* POSIX.2 functions.  Don't define these for Emacs.  */

#ifndef emacs

/* regcomp takes a regular expression as a string and compiles it.

   PREG is a regex_t *.  We do not expect any fields to be initialized,
   since POSIX says we shouldn't.  Thus, we set

     `buffer' to the compiled pattern;
     `used' to the length of the compiled pattern;
     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
       REG_EXTENDED bit in CFLAGS is set; otherwise, to
       RE_SYNTAX_POSIX_BASIC;
     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
     `fastmap' and `fastmap_accurate' to zero;
     `re_nsub' to the number of subexpressions in PATTERN.

   PATTERN is the address of the pattern string.

   CFLAGS is a series of bits which affect compilation.

     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
     use POSIX basic syntax.

     If REG_NEWLINE is set, then . and [^...] don't match newline.
     Also, regexec will try a match beginning after every newline.

     If REG_ICASE is set, then we considers upper- and lowercase
     versions of letters to be equivalent when matching.

     If REG_NOSUB is set, then when PREG is passed to regexec, that
     routine will report only success or failure, and nothing about the
     registers.

   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
   the return codes and their meanings.)  */

#ifdef __APPLE_CC__
__private_extern__
#endif
int
regcomp (preg, pattern, cflags)
    regex_t *preg;
    const char *pattern;
    int cflags;
{
  reg_errcode_t ret;
  unsigned syntax
    = (cflags & REG_EXTENDED) ?
      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;

  /* regex_compile will allocate the space for the compiled pattern.  */
  preg->buffer = 0;
  preg->allocated = 0;
  preg->used = 0;

  /* Don't bother to use a fastmap when searching.  This simplifies the
     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
     characters after newlines into the fastmap.  This way, we just try
     every character.  */
  preg->fastmap = 0;

  if (cflags & REG_ICASE)
    {
      unsigned i;

      preg->translate
	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
				      * sizeof (*(RE_TRANSLATE_TYPE)0));
      if (preg->translate == NULL)
        return (int) REG_ESPACE;

      /* Map uppercase characters to corresponding lowercase ones.  */
      for (i = 0; i < CHAR_SET_SIZE; i++)
        preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
    }
  else
    preg->translate = NULL;

  /* If REG_NEWLINE is set, newlines are treated differently.  */
  if (cflags & REG_NEWLINE)
    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
      syntax &= ~RE_DOT_NEWLINE;
      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
      /* It also changes the matching behavior.  */
      preg->newline_anchor = 1;
    }
  else
    preg->newline_anchor = 0;

  preg->no_sub = !!(cflags & REG_NOSUB);

  /* POSIX says a null character in the pattern terminates it, so we
     can use strlen here in compiling the pattern.  */
  ret = regex_compile (pattern, strlen (pattern), syntax, preg);

  /* POSIX doesn't distinguish between an unmatched open-group and an
     unmatched close-group: both are REG_EPAREN.  */
  if (ret == REG_ERPAREN) ret = REG_EPAREN;

  return (int) ret;
}


/* regexec searches for a given pattern, specified by PREG, in the
   string STRING.

   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
   least NMATCH elements, and we set them to the offsets of the
   corresponding matched substrings.

   EFLAGS specifies `execution flags' which affect matching: if
   REG_NOTBOL is set, then ^ does not match at the beginning of the
   string; if REG_NOTEOL is set, then $ does not match at the end.

   We return 0 if we find a match and REG_NOMATCH if not.  */

#ifdef __APPLE_CC__
__private_extern__
#endif
int
regexec (preg, string, nmatch, pmatch, eflags)
    const regex_t *preg;
    const char *string;
    size_t nmatch;
    regmatch_t pmatch[];
    int eflags;
{
  int ret;
  struct re_registers regs;
  regex_t private_preg;
  int len = strlen (string);
  boolean want_reg_info = !preg->no_sub && nmatch > 0;

  private_preg = *preg;

  private_preg.not_bol = !!(eflags & REG_NOTBOL);
  private_preg.not_eol = !!(eflags & REG_NOTEOL);

  /* The user has told us exactly how many registers to return
     information about, via `nmatch'.  We have to pass that on to the
     matching routines.  */
  private_preg.regs_allocated = REGS_FIXED;

  if (want_reg_info)
    {
      regs.num_regs = nmatch;
      regs.start = TALLOC (nmatch, regoff_t);
      regs.end = TALLOC (nmatch, regoff_t);
      if (regs.start == NULL || regs.end == NULL)
        return (int) REG_NOMATCH;
    }

  /* Perform the searching operation.  */
  ret = re_search (&private_preg, string, len,
                   /* start: */ 0, /* range: */ len,
                   want_reg_info ? &regs : (struct re_registers *) 0);

  /* Copy the register information to the POSIX structure.  */
  if (want_reg_info)
    {
      if (ret >= 0)
        {
          unsigned r;

          for (r = 0; r < nmatch; r++)
            {
              pmatch[r].rm_so = regs.start[r];
              pmatch[r].rm_eo = regs.end[r];
            }
        }

      /* If we needed the temporary register info, free the space now.  */
      free (regs.start);
      free (regs.end);
    }

  /* We want zero return to mean success, unlike `re_search'.  */
  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
}


/* Returns a message corresponding to an error code, ERRCODE, returned
   from either regcomp or regexec.   We don't use PREG here.  */

size_t
regerror (errcode, preg, errbuf, errbuf_size)
    int errcode;
    const regex_t *preg;
    char *errbuf;
    size_t errbuf_size;
{
  const char *msg;
  size_t msg_size;

  if (errcode < 0
      || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
    /* Only error codes returned by the rest of the code should be passed
       to this routine.  If we are given anything else, or if other regex
       code generates an invalid error code, then the program has a bug.
       Dump core so we can fix it.  */
    abort ();

  msg = gettext (re_error_msgid[errcode]);

  msg_size = strlen (msg) + 1; /* Includes the null.  */

  if (errbuf_size != 0)
    {
      if (msg_size > errbuf_size)
        {
          strncpy (errbuf, msg, errbuf_size - 1);
          errbuf[errbuf_size - 1] = 0;
        }
      else
        strcpy (errbuf, msg);
    }

  return msg_size;
}


/* Free dynamically allocated space used by PREG.  */

#ifdef __APPLE_CC__
__private_extern__
#endif
void
regfree (preg)
    regex_t *preg;
{
  if (preg->buffer != NULL)
    free (preg->buffer);
  preg->buffer = NULL;

  preg->allocated = 0;
  preg->used = 0;

  if (preg->fastmap != NULL)
    free (preg->fastmap);
  preg->fastmap = NULL;
  preg->fastmap_accurate = 0;

  if (preg->translate != NULL)
    free (preg->translate);
  preg->translate = NULL;
}

#endif /* not emacs  */