do_complex.c   [plain text]


/* $Xorg: do_complex.c,v 1.3 2000/08/17 19:54:09 cpqbld Exp $ */
/*****************************************************************************
Copyright 1988, 1989 by Digital Equipment Corporation, Maynard, Massachusetts.

                        All Rights Reserved

Permission to use, copy, modify, and distribute this software and its 
documentation for any purpose and without fee is hereby granted, 
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in 
supporting documentation, and that the name of Digital not be
used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.  

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

******************************************************************************/
/* $XFree86: xc/programs/x11perf/do_complex.c,v 1.9 2002/05/31 18:46:09 dawes Exp $ */

#include "x11perf.h"

#define NUM_POINTS 4    /* 4 points to an arrowhead */
#define NUM_ANGLES 3    /* But mostly it looks like a triangle */
static XPoint   *points;
static GC       pgc;

#include <math.h>
#if defined(QNX4) || defined(__CYGWIN__) || defined(__UNIXOS2__)
#define PI 3.14159265358979323846
#else
#define PI M_PI
#endif /* QNX4 */

int 
InitComplexPoly(XParms xp, Parms p, int reps)
{
    int     i, j, numPoints;
    int     x, y;
    int     size, iradius;
    double  phi, phiinc, radius, delta, phi2;
    XPoint  *curPoint;

    pgc = xp->fggc;

    size = p->special;
    phi = 0.0;
    delta = 2.0 * PI / ((double) NUM_ANGLES);
    if (xp->version == VERSION1_2) {
	radius = ((double) size) * sqrt(3.0)/2.0;
	phiinc = delta/10.0;
    } else {
	/* Version 1.2's radius computation was completely bogus, and resulted
	   in triangles with sides about 50% longer than advertised.  Since
	   in version 1.3 triangles are scaled to cover size^2 pixels, we do
	   the same computation here.  The arrowheads are a little larger than
	   simple triangles, because they lose 1/3 of their area due to the
	   notch cut out from them, so radius has to be sqrt(3/2) larger than
	   for simple triangles.
	 */
	radius = ((double) size) * sqrt(sqrt(4.0/3.0));
	phiinc = 1.75*PI / ((double) p->objects);
    }
    iradius = (int) radius + 1;

    numPoints = (p->objects) * NUM_POINTS;  
    points = (XPoint *)malloc(numPoints * sizeof(XPoint));
    curPoint = points;
    x = iradius;
    y = iradius;
    for (i = 0; i != p->objects; i++) {
	for (j = 0; j != NUM_ANGLES; j++) {
	    phi2 = phi + ((double) j) * delta;
	    curPoint->x = (int) ((double)x + (radius * cos(phi2)) + 0.5);
	    curPoint->y = (int) ((double)y + (radius * sin(phi2)) + 0.5);
	    curPoint++;
	}
	curPoint->x = x;
	curPoint->y = y;
	curPoint++;

	phi += phiinc;
	y += 2 * iradius;
	if (y + iradius >= HEIGHT) {
	    y = iradius;
	    x += 2 * iradius;
	    if (x + iradius >= WIDTH) {
		x = iradius;
	    }
	}
    }
    return reps;
}

void 
DoComplexPoly(XParms xp, Parms p, int reps)
{
    int     i, j;
    XPoint  *curPoint;

    for (i = 0; i != reps; i++) {
        curPoint = points;
        for (j = 0; j != p->objects; j++) {
            XFillPolygon(xp->d, xp->w, pgc, curPoint, NUM_POINTS, Complex, 
			 CoordModeOrigin);
            curPoint += NUM_POINTS;
	  }
        if (pgc == xp->bggc)
            pgc = xp->fggc;
        else
            pgc = xp->bggc;
	CheckAbort ();
    }
}

void 
EndComplexPoly(XParms xp, Parms p)
{
    free(points);
}

int 
InitGeneralPoly(XParms xp, Parms p, int reps)
{
    int     i, j, numPoints;
    int	    nsides;
    int	    x, y;
    int     size, iradius;
    double  phi, phiinc, inner_radius, outer_radius, delta, phi2;
    XPoint  *curPoint;

    pgc = xp->fggc;
    size = p->special;
    nsides = (long) p->font;
    phi = 0.0;
    delta = 2.0 * PI / ((double) nsides);
    phiinc = delta / 10.0;

    inner_radius = size / sqrt (nsides * tan (PI / nsides));
    outer_radius = inner_radius / cos (PI / (2 * nsides));
    numPoints = p->objects * nsides;
    points = (XPoint *) malloc (numPoints * sizeof (XPoint));
    curPoint = points;
    iradius = outer_radius + 1;
    x = iradius;
    y = iradius;
    for (i = 0; i < p->objects; i++) {
	phi2 = phi;
	for (j = 0; j < nsides; j++) {
	    curPoint->x = x + (outer_radius * cos(phi2) + 0.5);
	    curPoint->y = y + (outer_radius * sin(phi2) + 0.5);
	    curPoint++;
	    phi2 += delta;
	}
	phi += phiinc;
	y += 2 * iradius;
	if (y + iradius >= HEIGHT) {
	    y = iradius;
	    x += 2 * iradius;
	    if (x + iradius >= WIDTH) {
		x = iradius;
	    }
	}
    }
    return reps;
}

void 
DoGeneralPoly(XParms xp, Parms p, int reps)
{
    int     i, j;
    int	    nsides;
    int	    mode;
    XPoint  *curPoint;

    nsides = (long) p->font;
    mode = (long) p->bfont;
    for (i = 0; i != reps; i++) {
        curPoint = points;
        for (j = 0; j != p->objects; j++) {
            XFillPolygon(xp->d, xp->w, pgc, curPoint, nsides, mode, 
			 CoordModeOrigin);
            curPoint += nsides;
	  }
        if (pgc == xp->bggc)
            pgc = xp->fggc;
        else
            pgc = xp->bggc;
	CheckAbort ();
    }
}