/** * This file is part of the DOM implementation for KDE. * * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2005 Allan Sandfeld Jensen (kde@carewolf.com) * (C) 2005, 2006 Samuel Weinig (sam.weinig@gmail.com) * Copyright (C) 2005 Apple Computer, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * */ #include "config.h" #include "RenderBox.h" #include "CachedImage.h" #include "Document.h" #include "FrameView.h" #include "GraphicsContext.h" #include "HTMLElement.h" #include "HTMLNames.h" #include "RenderArena.h" #include "RenderView.h" #include "RenderFlexibleBox.h" #include "RenderTableCell.h" #include "RenderTheme.h" #include #include #include #if PLATFORM(MAC) #include "FrameMac.h" #endif using namespace std; namespace WebCore { using namespace HTMLNames; #define TABLECELLMARGIN -0x4000 RenderBox::RenderBox(Node* node) : RenderObject(node) { m_minWidth = -1; m_maxWidth = -1; m_overrideSize = -1; m_width = m_height = 0; m_x = 0; m_y = 0; m_marginTop = 0; m_marginBottom = 0; m_marginLeft = 0; m_marginRight = 0; m_staticX = 0; m_staticY = 0; m_layer = 0; m_inlineBoxWrapper = 0; } static RenderBlock* blockThatPaintsFloat(RenderObject* f) { RenderBlock* lastBlock = 0; for (RenderObject* o = f->parent(); o; o = o->parent()) { if (lastBlock && o->layer()) break; if (o->isRenderBlock()) lastBlock = static_cast(o); } return lastBlock; } void RenderBox::setStyle(RenderStyle *_style) { bool wasFloating = isFloating(); RenderObject::setStyle(_style); // The root always paints its background/border. if (isRoot()) setShouldPaintBackgroundOrBorder(true); setInline(_style->isDisplayInlineType()); switch (_style->position()) { case AbsolutePosition: case FixedPosition: setPositioned(true); break; default: setPositioned(false); if (_style->isFloating()) setFloating(true); if (_style->position() == RelativePosition) setRelPositioned(true); } // We also handle and , whose overflow applies to the viewport. if (!isRoot() && (!isBody() || !document()->isHTMLDocument()) && (isRenderBlock() || isTableRow() || isTableSection())) { // Check for overflow clip. // It's sufficient to just check one direction, since it's illegal to have visible on only one overflow value. if (_style->overflowX() != OVISIBLE) setHasOverflowClip(); } if (requiresLayer()) { if (!m_layer) { if (wasFloating && isFloating()) { if (RenderBlock* b = blockThatPaintsFloat(this)) b->setPaintsFloatingObject(this, false); } m_layer = new (renderArena()) RenderLayer(this); m_layer->insertOnlyThisLayer(); if (parent() && !needsLayout() && containingBlock()) m_layer->updateLayerPositions(); } } else if (m_layer && !isRoot() && !isRenderView()) { assert(m_layer->parent()); RenderLayer* layer = m_layer; m_layer = 0; layer->removeOnlyThisLayer(); if (wasFloating && isFloating()) { if (RenderBlock* b = blockThatPaintsFloat(this)) b->setPaintsFloatingObject(this, true); } } if (m_layer) m_layer->styleChanged(); // Set the text color if we're the body. if (isBody()) element()->document()->setTextColor(_style->color()); if (style()->outlineWidth() > 0 && style()->outlineSize() > maximalOutlineSize(PaintPhaseOutline)) static_cast(document()->renderer())->setMaximalOutlineSize(style()->outlineSize()); } RenderBox::~RenderBox() { } void RenderBox::destroy() { // A lot of the code in this funtion is just pasted into // RenderWidget::destroy. If anything in this function changes, // be sure to fix RenderWidget::destroy() as well. RenderLayer* layer = m_layer; RenderArena* arena = renderArena(); // This must be done before we destroy the RenderObject. if (layer) layer->clearClipRect(); RenderObject::destroy(); if (layer) layer->destroy(arena); } int RenderBox::contentWidth() const { int w = m_width - (borderLeft() + borderRight() + paddingLeft() + paddingRight()); if (includeVerticalScrollbarSize()) w -= m_layer->verticalScrollbarWidth(); return w; } int RenderBox::contentHeight() const { int h = m_height - (borderTop() + borderBottom() + paddingTop() + paddingBottom()); if (includeHorizontalScrollbarSize()) h -= m_layer->horizontalScrollbarHeight(); return h; } int RenderBox::overrideWidth() const { return m_overrideSize == -1 ? m_width : m_overrideSize; } int RenderBox::overrideHeight() const { return m_overrideSize == -1 ? m_height : m_overrideSize; } void RenderBox::setPos(int xPos, int yPos) { if (xPos == m_x && yPos == m_y) return; // Optimize for the case where we don't move at all. m_x = xPos; m_y = yPos; } int RenderBox::width() const { return m_width; } int RenderBox::height() const { return m_height; } int RenderBox::calcBorderBoxWidth(int w) const { int toAdd = borderLeft() + borderRight() + paddingLeft() + paddingRight(); if (style()->boxSizing() == CONTENT_BOX) return w + toAdd; return max(w, toAdd); } int RenderBox::calcBorderBoxHeight(int h) const { int toAdd = borderTop() + borderBottom() + paddingTop() + paddingBottom(); if (style()->boxSizing() == CONTENT_BOX) return h + toAdd; return max(h, toAdd); } int RenderBox::calcContentBoxWidth(int w) const { if (style()->boxSizing() == BORDER_BOX) w -= (borderLeft() + borderRight() + paddingLeft() + paddingRight()); return max(0, w); } int RenderBox::calcContentBoxHeight(int h) const { if (style()->boxSizing() == BORDER_BOX) h -= (borderTop() + borderBottom() + paddingTop() + paddingBottom()); return max(0, h); } // Hit Testing bool RenderBox::nodeAtPoint(NodeInfo& info, int x, int y, int tx, int ty, HitTestAction action) { tx += m_x; ty += m_y; // Check kids first. for (RenderObject* child = lastChild(); child; child = child->previousSibling()) { // FIXME: We have to skip over inline flows, since they can show up inside table rows // at the moment (a demoted inline
for example). If we ever implement a // table-specific hit-test method (which we should do for performance reasons anyway), // then we can remove this check. if (!child->layer() && !child->isInlineFlow() && child->nodeAtPoint(info, x, y, tx, ty, action)) { setInnerNode(info); return true; } } // Check our bounds next. For this purpose always assume that we can only be hit in the // foreground phase (which is true for replaced elements like images). if (action == HitTestForeground && IntRect(tx, ty, m_width, m_height).contains(x, y)) { setInnerNode(info); return true; } return false; } // --------------------- painting stuff ------------------------------- void RenderBox::paint(PaintInfo& i, int _tx, int _ty) { _tx += m_x; _ty += m_y; // default implementation. Just pass paint through to the children for (RenderObject* child = firstChild(); child; child = child->nextSibling()) child->paint(i, _tx, _ty); } void RenderBox::paintRootBoxDecorations(PaintInfo& i, int _tx, int _ty) { const BackgroundLayer* bgLayer = style()->backgroundLayers(); Color bgColor = style()->backgroundColor(); if (document()->isHTMLDocument() && !style()->hasBackground()) { // Locate the element using the DOM. This is easier than trying // to crawl around a render tree with potential :before/:after content and // anonymous blocks created by inline tags etc. We can locate the // render object very easily via the DOM. HTMLElement* body = document()->body(); RenderObject* bodyObject = (body && body->hasLocalName(bodyTag)) ? body->renderer() : 0; if (bodyObject) { bgLayer = bodyObject->style()->backgroundLayers(); bgColor = bodyObject->style()->backgroundColor(); } } int w = width(); int h = height(); int rw, rh; if (view()->frameView()) { rw = view()->frameView()->contentsWidth(); rh = view()->frameView()->contentsHeight(); } else { rw = view()->width(); rh = view()->height(); } int bx = _tx - marginLeft(); int by = _ty - marginTop(); int bw = max(w + marginLeft() + marginRight() + borderLeft() + borderRight(), rw); int bh = max(h + marginTop() + marginBottom() + borderTop() + borderBottom(), rh); // CSS2 14.2: // " The background of the box generated by the root element covers the entire canvas." // hence, paint the background even in the margin areas (unlike for every other element!) // I just love these little inconsistencies .. :-( (Dirk) int my = max(by, i.r.y()); paintBackgrounds(i.p, bgColor, bgLayer, my, i.r.height(), bx, by, bw, bh); if (style()->hasBorder() && style()->display() != INLINE) paintBorder( i.p, _tx, _ty, w, h, style() ); } void RenderBox::paintBoxDecorations(PaintInfo& i, int _tx, int _ty) { if (!shouldPaintWithinRoot(i)) return; if (isRoot()) return paintRootBoxDecorations(i, _tx, _ty); int w = width(); int h = height() + borderTopExtra() + borderBottomExtra(); _ty -= borderTopExtra(); int my = max(_ty, i.r.y()); int mh; if (_ty < i.r.y()) mh = max(0, h - (i.r.y() - _ty)); else mh = min(i.r.height(), h); // If we have a native theme appearance, paint that before painting our background. // The theme will tell us whether or not we should also paint the CSS background. bool themePainted = style()->hasAppearance() && !theme()->paint(this, i, IntRect(_tx, _ty, w, h)); if (!themePainted) { // The only paints its background if the root element has defined a background // independent of the body. Go through the DOM to get to the root element's render object, // since the root could be inline and wrapped in an anonymous block. if (!isBody() || !document()->isHTMLDocument() || document()->documentElement()->renderer()->style()->hasBackground()) paintBackgrounds(i.p, style()->backgroundColor(), style()->backgroundLayers(), my, mh, _tx, _ty, w, h); if (style()->hasAppearance()) theme()->paintDecorations(this, i, IntRect(_tx, _ty, w, h)); } // The theme will tell us whether or not we should also paint the CSS border. if ((!style()->hasAppearance() || (!themePainted && theme()->paintBorderOnly(this, i, IntRect(_tx, _ty, w, h)))) && style()->hasBorder()) paintBorder(i.p, _tx, _ty, w, h, style()); } void RenderBox::paintBackgrounds(GraphicsContext* p, const Color& c, const BackgroundLayer* bgLayer, int clipy, int cliph, int _tx, int _ty, int w, int height) { if (!bgLayer) return; paintBackgrounds(p, c, bgLayer->next(), clipy, cliph, _tx, _ty, w, height); paintBackground(p, c, bgLayer, clipy, cliph, _tx, _ty, w, height); } void RenderBox::paintBackground(GraphicsContext* p, const Color& c, const BackgroundLayer* bgLayer, int clipy, int cliph, int _tx, int _ty, int w, int height) { paintBackgroundExtended(p, c, bgLayer, clipy, cliph, _tx, _ty, w, height, borderLeft(), borderRight(), paddingLeft(), paddingRight()); } static void cacluateBackgroundSize(const BackgroundLayer* bgLayer, int& scaledWidth, int& scaledHeight) { CachedImage* bg = bgLayer->backgroundImage(); if (bgLayer->isBackgroundSizeSet()) { Length bgWidth = bgLayer->backgroundSize().width; Length bgHeight = bgLayer->backgroundSize().height; if (bgWidth.isPercent()) scaledWidth = scaledWidth * bgWidth.value() / 100; else if (bgWidth.isFixed()) scaledWidth = bgWidth.value(); else if (bgWidth.isAuto()) { // If the width is auto and the height is not, we have to use the appropriate // scale to maintain our aspect ratio. if (bgHeight.isPercent()) { int scaledH = scaledHeight * bgHeight.value() / 100; scaledWidth = bg->imageSize().width() * scaledH / bg->imageSize().height(); } else if (bgHeight.isFixed()) scaledWidth = bg->imageSize().width() * bgHeight.value() / bg->imageSize().height(); } if (bgHeight.isPercent()) scaledHeight = scaledHeight * bgHeight.value() / 100; else if (bgHeight.isFixed()) scaledHeight = bgHeight.value(); else if (bgHeight.isAuto()) { // If the height is auto and the width is not, we have to use the appropriate // scale to maintain our aspect ratio. if (bgWidth.isPercent()) scaledHeight = bg->imageSize().height() * scaledWidth / bg->imageSize().width(); else if (bgWidth.isFixed()) scaledHeight = bg->imageSize().height() * bgWidth.value() / bg->imageSize().width(); else if (bgWidth.isAuto()) { // If both width and height are auto, we just want to use the image's // intrinsic size. scaledWidth = bg->imageSize().width(); scaledHeight = bg->imageSize().height(); } } } else { scaledWidth = bg->imageSize().width(); scaledHeight = bg->imageSize().height(); } } void RenderBox::paintBackgroundExtended(GraphicsContext* p, const Color& c, const BackgroundLayer* bgLayer, int clipy, int cliph, int _tx, int _ty, int w, int h, int bleft, int bright, int pleft, int pright) { bool clippedToBorderRadius = false; if (style()->hasBorderRadius()) { p->save(); p->addRoundedRectClip(FloatRect(_tx + 0.5, _ty + 0.5, w - 1.0, h - 1.0), FloatSize(style()->borderTopLeftRadius().width() - 0.5, style()->borderTopLeftRadius().height() - 0.5), FloatSize(style()->borderTopRightRadius().width() - 0.5, style()->borderTopRightRadius().height() - 0.5), FloatSize(style()->borderBottomLeftRadius().width() - 0.5, style()->borderBottomLeftRadius().height() - 0.5), FloatSize(style()->borderBottomRightRadius().width() - 0.5, style()->borderBottomRightRadius().height() - 0.5)); clippedToBorderRadius = true; } if (bgLayer->backgroundClip() != BGBORDER) { // Clip to the padding or content boxes as necessary. bool includePadding = bgLayer->backgroundClip() == BGCONTENT; int x = _tx + bleft + (includePadding ? pleft : 0); int y = _ty + borderTop() + (includePadding ? paddingTop() : 0); int width = w - bleft - bright - (includePadding ? pleft + pright : 0); int height = h - borderTop() - borderBottom() - (includePadding ? paddingTop() + paddingBottom() : 0); p->save(); p->addClip(IntRect(x, y, width, height)); } CachedImage* bg = bgLayer->backgroundImage(); bool shouldPaintBackgroundImage = bg && bg->canRender(); Color bgColor = c; // When this style flag is set, change existing background colors and images to a solid white background. // If there's no bg color or image, leave it untouched to avoid affecting transparency. // We don't try to avoid loading the background images, because this style flag is only set // when printing, and at that point we've already loaded the background images anyway. (To avoid // loading the background images we'd have to do this check when applying styles rather than // while rendering.) if (style()->forceBackgroundsToWhite()) { // Note that we can't reuse this variable below because the bgColor might be changed bool shouldPaintBackgroundColor = !bgLayer->next() && bgColor.isValid() && bgColor.alpha() > 0; if (shouldPaintBackgroundImage || shouldPaintBackgroundColor) { bgColor = Color::white; shouldPaintBackgroundImage = false; } } // Only fill with a base color (e.g., white) if we're the root document, since iframes/frames with // no background in the child document should show the parent's background. if (!bgLayer->next() && isRoot() && !(bgColor.isValid() && bgColor.alpha() > 0) && view()->frameView()) { bool isTransparent; Node* elt = document()->ownerElement(); if (elt) { if (elt->hasTagName(frameTag)) isTransparent = false; else { // Locate the element using the DOM. This is easier than trying // to crawl around a render tree with potential :before/:after content and // anonymous blocks created by inline tags etc. We can locate the // render object very easily via the DOM. HTMLElement* body = document()->body(); isTransparent = !body || !body->hasLocalName(framesetTag); // Can't scroll a frameset document anyway. } } else isTransparent = view()->frameView()->isTransparent(); if (isTransparent) view()->frameView()->useSlowRepaints(); // The parent must show behind the child. else bgColor = Color::white; } // Paint the color first underneath all images. if (!bgLayer->next() && bgColor.isValid() && bgColor.alpha() > 0) { IntRect rect(_tx, clipy, w, cliph); // If we have an alpha and we are painting the root element, go ahead and blend with white. if (bgColor.alpha() < 0xFF && isRoot() && !view()->frameView()->isTransparent()) p->fillRect(rect, Color(Color::white)); p->fillRect(rect, bgColor); } // no progressive loading of the background image if (shouldPaintBackgroundImage) { int sx = 0; int sy = 0; int cw,ch; int cx,cy; int scaledImageWidth, scaledImageHeight; // CSS2 chapter 14.2.1 if (bgLayer->backgroundAttachment()) { // scroll int hpab = 0, vpab = 0, left = 0, top = 0; // Init to 0 for background-origin of 'border' if (bgLayer->backgroundOrigin() != BGBORDER) { hpab += bleft + bright; vpab += borderTop() + borderBottom(); left += bleft; top += borderTop(); if (bgLayer->backgroundOrigin() == BGCONTENT) { hpab += pleft + pright; vpab += paddingTop() + paddingBottom(); left += pleft; top += paddingTop(); } } int pw = w - hpab; int ph = h - vpab; scaledImageWidth = pw; scaledImageHeight = ph; cacluateBackgroundSize(bgLayer, scaledImageWidth, scaledImageHeight); EBackgroundRepeat bgr = bgLayer->backgroundRepeat(); if ((bgr == NO_REPEAT || bgr == REPEAT_Y) && w > scaledImageWidth) { cw = scaledImageWidth; int xPosition = bgLayer->backgroundXPosition().calcMinValue(pw - scaledImageWidth); if (xPosition >= 0) cx = _tx + xPosition; else { cx = _tx; if (scaledImageWidth > 0) { sx = -xPosition; cw += xPosition; } } cx += left; } else { // repeat over x or background is wider than box cw = w; cx = _tx; if (scaledImageWidth > 0) { int xPosition = bgLayer->backgroundXPosition().calcMinValue(pw - scaledImageWidth); if ((xPosition > 0) && (bgr == NO_REPEAT)) { cx += xPosition; cw -= xPosition; } else { sx = scaledImageWidth - (xPosition % scaledImageWidth); sx -= left % scaledImageWidth; } } } if((bgr == NO_REPEAT || bgr == REPEAT_X) && h > scaledImageHeight) { ch = scaledImageHeight; int yPosition = bgLayer->backgroundYPosition().calcMinValue(ph - scaledImageHeight); if (yPosition >= 0) cy = _ty + yPosition; else { cy = _ty; if (scaledImageHeight > 0) { sy = -yPosition; ch += yPosition; } } cy += top; } else { // repeat over y or background is taller than box ch = h; cy = _ty; if (scaledImageHeight > 0) { int yPosition = bgLayer->backgroundYPosition().calcMinValue(ph - scaledImageHeight); if ((yPosition > 0) && (bgr == NO_REPEAT)) { cy += yPosition; ch -= yPosition; } else { sy = scaledImageHeight - (yPosition % scaledImageHeight); sy -= top % scaledImageHeight; } } } } else { //fixed IntRect vr = viewRect(); int pw = vr.width(); int ph = vr.height(); scaledImageWidth = pw; scaledImageHeight = ph; cacluateBackgroundSize(bgLayer, scaledImageWidth, scaledImageHeight); EBackgroundRepeat bgr = bgLayer->backgroundRepeat(); if ((bgr == NO_REPEAT || bgr == REPEAT_Y) && pw > scaledImageWidth) { cw = scaledImageWidth; cx = vr.x() + bgLayer->backgroundXPosition().calcMinValue(pw - scaledImageWidth); } else { cw = pw; cx = vr.x(); if (scaledImageWidth > 0) sx = scaledImageWidth - bgLayer->backgroundXPosition().calcMinValue(pw - scaledImageWidth) % scaledImageWidth; } if ((bgr == NO_REPEAT || bgr == REPEAT_X) && ph > scaledImageHeight) { ch = scaledImageHeight; cy = vr.y() + bgLayer->backgroundYPosition().calcMinValue(ph - scaledImageHeight); } else { ch = ph; cy = vr.y(); if (scaledImageHeight > 0) sy = scaledImageHeight - bgLayer->backgroundYPosition().calcMinValue(ph - scaledImageHeight) % scaledImageHeight; } IntRect b = intersection(IntRect(cx, cy, cw, ch), IntRect(_tx, _ty, w, h)); sx += b.x() - cx; sy += b.y() - cy; cx = b.x(); cy = b.y(); cw = b.width(); ch = b.height(); } if (cw > 0 && ch > 0) { p->drawTiledImage(bg->image(), IntRect(cx, cy, cw, ch), IntPoint(sx, sy), IntSize(scaledImageWidth, scaledImageHeight), bgLayer->backgroundComposite()); if (!p->paintingDisabled()) bg->liveResourceAccessed(); } } if (bgLayer->backgroundClip() != BGBORDER) p->restore(); // Undo the background clip if (clippedToBorderRadius) p->restore(); // Undo the border radius clip } #if PLATFORM(MAC) void RenderBox::paintCustomHighlight(int tx, int ty, const AtomicString& type, bool behindText) { InlineBox* boxWrap = inlineBoxWrapper(); RootInlineBox* r = boxWrap ? boxWrap->root() : 0; if (r) { FloatRect rootRect(tx + r->xPos(), ty + r->selectionTop(), r->width(), r->selectionHeight()); FloatRect imageRect(tx + m_x, rootRect.y(), width(), rootRect.height()); Mac(document()->frame())->paintCustomHighlight(type, imageRect, rootRect, behindText, false); } else { FloatRect imageRect(tx + m_x, ty + m_y, width(), height()); Mac(document()->frame())->paintCustomHighlight(type, imageRect, imageRect, behindText, false); } } #endif void RenderBox::outlineBox(GraphicsContext* p, int _tx, int _ty, const char* color) { p->setPen(Pen(Color(color), 1, Pen::DotLine)); p->setFillColor(Color::transparent); p->drawRect(IntRect(_tx, _ty, m_width, m_height)); } IntRect RenderBox::getOverflowClipRect(int tx, int ty) { // XXX When overflow-clip (CSS3) is implemented, we'll obtain the property // here. int bl=borderLeft(),bt=borderTop(),bb=borderBottom(),br=borderRight(); int clipx = tx + bl; int clipy = ty + bt; int clipw = m_width - bl - br; int cliph = m_height - bt - bb + borderTopExtra() + borderBottomExtra(); // Subtract out scrollbars if we have them. if (m_layer) { clipw -= m_layer->verticalScrollbarWidth(); cliph -= m_layer->horizontalScrollbarHeight(); } return IntRect(clipx,clipy,clipw,cliph); } IntRect RenderBox::getClipRect(int tx, int ty) { int clipx = tx; int clipy = ty; int clipw = m_width; int cliph = m_height; if (!style()->clipLeft().isAuto()) { int c = style()->clipLeft().calcValue(m_width); clipx += c; clipw -= c; } if (!style()->clipRight().isAuto()) { int w = style()->clipRight().calcValue(m_width); clipw -= m_width - w; } if (!style()->clipTop().isAuto()) { int c = style()->clipTop().calcValue(m_height); clipy += c; cliph -= c; } if (!style()->clipBottom().isAuto()) { int h = style()->clipBottom().calcValue(m_height); cliph -= m_height - h; } return IntRect(clipx, clipy, clipw, cliph); } int RenderBox::containingBlockWidth() const { RenderBlock* cb = containingBlock(); if (!cb) return 0; if (shrinkToAvoidFloats()) return cb->lineWidth(m_y); else return cb->contentWidth(); } bool RenderBox::absolutePosition(int &xPos, int &yPos, bool f) { if (style()->position() == FixedPosition) f = true; RenderObject *o = container(); if (o && o->absolutePosition(xPos, yPos, f)) { yPos += o->borderTopExtra(); if (style()->position() == AbsolutePosition && o->isRelPositioned() && o->isInlineFlow()) { // When we have an enclosing relpositioned inline, we need to add in the offset of the first line // box from the rest of the content, but only in the cases where we know we're positioned // relative to the inline itself. RenderFlow* flow = static_cast(o); int sx = 0; int sy = 0; if (flow->firstLineBox()) { sx = flow->firstLineBox()->xPos(); sy = flow->firstLineBox()->yPos(); } else { sx = flow->staticX(); sy = flow->staticY(); } bool isInlineType = style()->isOriginalDisplayInlineType(); if (!hasStaticX()) xPos += sx; // This is not terribly intuitive, but we have to match other browsers. Despite being a block display type inside // an inline, we still keep our x locked to the left of the relative positioned inline. Arguably the correct // behavior would be to go flush left to the block that contains the inline, but that isn't what other browsers // do. if (hasStaticX() && !isInlineType) // Avoid adding in the left border/padding of the containing block twice. Subtract it out. xPos += sx - (containingBlock()->borderLeft() + containingBlock()->paddingLeft()); if (!hasStaticY()) yPos += sy; } if (o->hasOverflowClip()) o->layer()->subtractScrollOffset(xPos, yPos); if (!isInline() || isReplaced()) { xPos += m_x; yPos += m_y; } if (isRelPositioned()) { xPos += relativePositionOffsetX(); yPos += relativePositionOffsetY(); } return true; } else { xPos = yPos = 0; return false; } } void RenderBox::dirtyLineBoxes(bool fullLayout, bool) { if (m_inlineBoxWrapper) { if (fullLayout) { m_inlineBoxWrapper->destroy(renderArena()); m_inlineBoxWrapper = 0; } else m_inlineBoxWrapper->dirtyLineBoxes(); } } void RenderBox::position(InlineBox* box, int from, int len, bool reverse, bool override) { if (isPositioned()) { // Cache the x position only if we were an INLINE type originally. bool wasInline = style()->isOriginalDisplayInlineType(); if (wasInline && hasStaticX()) { // The value is cached in the xPos of the box. We only need this value if // our object was inline originally, since otherwise it would have ended up underneath // the inlines. m_staticX = box->xPos(); } else if (!wasInline && hasStaticY()) // Our object was a block originally, so we make our normal flow position be // just below the line box (as though all the inlines that came before us got // wrapped in an anonymous block, which is what would have happened had we been // in flow). This value was cached in the yPos() of the box. m_staticY = box->yPos(); // Nuke the box. box->remove(); box->destroy(renderArena()); } else if (isReplaced()) { m_x = box->xPos(); m_y = box->yPos(); m_inlineBoxWrapper = box; } } // For inline replaced elements, this function returns the inline box that owns us. Enables // the replaced RenderObject to quickly determine what line it is contained on and to easily // iterate over structures on the line. InlineBox* RenderBox::inlineBoxWrapper() const { return m_inlineBoxWrapper; } void RenderBox::deleteLineBoxWrapper() { if (m_inlineBoxWrapper) { if (!documentBeingDestroyed()) m_inlineBoxWrapper->remove(); m_inlineBoxWrapper->destroy(renderArena()); m_inlineBoxWrapper = 0; } } void RenderBox::setInlineBoxWrapper(InlineBox* b) { m_inlineBoxWrapper = b; } IntRect RenderBox::getAbsoluteRepaintRect() { IntRect r = overflowRect(false); if (style()) { if (style()->hasAppearance()) // The theme may wish to inflate the rect used when repainting. theme()->adjustRepaintRect(this, r); r.inflate(style()->outlineSize()); // FIXME: Technically the outline inflation could fit within the theme inflation. } computeAbsoluteRepaintRect(r); return r; } void RenderBox::computeAbsoluteRepaintRect(IntRect& r, bool f) { int x = r.x() + m_x; int y = r.y() + m_y; // Apply the relative position offset when invalidating a rectangle. The layer // is translated, but the render box isn't, so we need to do this to get the // right dirty rect. Since this is called from RenderObject::setStyle, the relative position // flag on the RenderObject has been cleared, so use the one on the style(). if (style()->position() == RelativePosition && m_layer) m_layer->relativePositionOffset(x,y); if (style()->position()==FixedPosition) f = true; RenderObject* o = container(); if (o) { if (style()->position() == AbsolutePosition && o->isRelPositioned() && o->isInlineFlow()) { // When we have an enclosing relpositioned inline, we need to add in the offset of the first line // box from the rest of the content, but only in the cases where we know we're positioned // relative to the inline itself. RenderFlow* flow = static_cast(o); int sx = 0; int sy = 0; if (flow->firstLineBox()) { sx = flow->firstLineBox()->xPos(); sy = flow->firstLineBox()->yPos(); } else { sx = flow->staticX(); sy = flow->staticY(); } bool isInlineType = style()->isOriginalDisplayInlineType(); if (!hasStaticX()) x += sx; // This is not terribly intuitive, but we have to match other browsers. Despite being a block display type inside // an inline, we still keep our x locked to the left of the relative positioned inline. Arguably the correct // behavior would be to go flush left to the block that contains the inline, but that isn't what other browsers // do. if (hasStaticX() && !isInlineType) // Avoid adding in the left border/padding of the containing block twice. Subtract it out. x += sx - (containingBlock()->borderLeft() + containingBlock()->paddingLeft()); if (!hasStaticY()) y += sy; } // may not have overflow, since it might be applying its overflow value to the // scrollbars. if (o->hasOverflowClip()) { // o->height() is inaccurate if we're in the middle of a layout of |o|, so use the // layer's size instead. Even if the layer's size is wrong, the layer itself will repaint // anyway if its size does change. IntRect boxRect(0, 0, o->layer()->width(), o->layer()->height()); o->layer()->subtractScrollOffset(x,y); // For overflow:auto/scroll/hidden. IntRect repaintRect(x, y, r.width(), r.height()); r = intersection(repaintRect, boxRect); if (r.isEmpty()) return; } else { r.setX(x); r.setY(y); } o->computeAbsoluteRepaintRect(r, f); } } void RenderBox::repaintDuringLayoutIfMoved(int oldX, int oldY) { int newX = m_x; int newY = m_y; if (oldX != newX || oldY != newY) { // The child moved. Invalidate the object's old and new positions. We have to do this // since the object may not have gotten a layout. m_x = oldX; m_y = oldY; repaint(); repaintOverhangingFloats(true); m_x = newX; m_y = newY; repaint(); repaintOverhangingFloats(true); } } int RenderBox::relativePositionOffsetX() const { int tx = 0; if(!style()->left().isAuto()) tx = style()->left().calcValue(containingBlockWidth()); else if(!style()->right().isAuto()) tx = -style()->right().calcValue(containingBlockWidth()); return tx; } int RenderBox::relativePositionOffsetY() const { int ty = 0; if(!style()->top().isAuto()) { if (!style()->top().isPercent() || containingBlock()->style()->height().isFixed()) ty = style()->top().calcValue(containingBlockHeight()); } else if(!style()->bottom().isAuto()) { if (!style()->bottom().isPercent() || containingBlock()->style()->height().isFixed()) ty = -style()->bottom().calcValue(containingBlockHeight()); } return ty; } void RenderBox::calcWidth() { if (isPositioned()) { calcAbsoluteHorizontal(); return; } // If layout is limited to a subtree, the subtree root's width does not change. if (node() && view()->frameView() && view()->frameView()->layoutRoot() == node()) return; // The parent box is flexing us, so it has increased or decreased our // width. Use the width from the style context. if (m_overrideSize != -1 && parent()->style()->boxOrient() == HORIZONTAL && parent()->isFlexibleBox() && parent()->isFlexingChildren()) { m_width = m_overrideSize; return; } bool inVerticalBox = parent()->isFlexibleBox() && (parent()->style()->boxOrient() == VERTICAL); bool stretching = (parent()->style()->boxAlign() == BSTRETCH); bool treatAsReplaced = isReplaced() && !isInlineBlockOrInlineTable() && (!inVerticalBox || !stretching); Length width = (treatAsReplaced) ? Length(calcReplacedWidth(), Fixed) : style()->width(); RenderBlock* cb = containingBlock(); int containerWidth = max(0, containingBlockWidth()); Length marginLeft = style()->marginLeft(); Length marginRight = style()->marginRight(); if (isInline() && !isInlineBlockOrInlineTable()) { // just calculate margins m_marginLeft = marginLeft.calcMinValue(containerWidth); m_marginRight = marginRight.calcMinValue(containerWidth); if (treatAsReplaced) m_width = max(width.value() + borderLeft() + borderRight() + paddingLeft() + paddingRight(), m_minWidth); return; } // Width calculations if (treatAsReplaced) m_width = width.value() + borderLeft() + borderRight() + paddingLeft() + paddingRight(); else { // Calculate Width m_width = calcWidthUsing(Width, containerWidth); // Calculate MaxWidth if (style()->maxWidth().value() != undefinedLength) { int maxW = calcWidthUsing(MaxWidth, containerWidth); if (m_width > maxW) { m_width = maxW; width = style()->maxWidth(); } } // Calculate MinWidth int minW = calcWidthUsing(MinWidth, containerWidth); if (m_width < minW) { m_width = minW; width = style()->minWidth(); } } // Margin calculations if (width.isAuto()) { m_marginLeft = marginLeft.calcMinValue(containerWidth); m_marginRight = marginRight.calcMinValue(containerWidth); } else { m_marginLeft = 0; m_marginRight = 0; calcHorizontalMargins(marginLeft, marginRight, containerWidth); } if (containerWidth && containerWidth != (m_width + m_marginLeft + m_marginRight) && !isFloating() && !isInline() && !cb->isFlexibleBox()) { if (cb->style()->direction() == LTR) m_marginRight = containerWidth - m_width - m_marginLeft; else m_marginLeft = containerWidth - m_width - m_marginRight; } } int RenderBox::calcWidthUsing(WidthType widthType, int cw) { int width = m_width; Length w; if (widthType == Width) w = style()->width(); else if (widthType == MinWidth) w = style()->minWidth(); else w = style()->maxWidth(); if (w.isIntrinsicOrAuto()) { int marginLeft = style()->marginLeft().calcMinValue(cw); int marginRight = style()->marginRight().calcMinValue(cw); if (cw) width = cw - marginLeft - marginRight; if (sizesToIntrinsicWidth(widthType)) { width = max(width, m_minWidth); width = min(width, m_maxWidth); } } else width = calcBorderBoxWidth(w.calcValue(cw)); return width; } bool RenderBox::sizesToIntrinsicWidth(WidthType widthType) const { // Marquees in WinIE are like a mixture of blocks and inline-blocks. They size as though they're blocks, // but they allow text to sit on the same line as the marquee. if (isFloating() || (isCompact() && isInline()) || (isInlineBlockOrInlineTable() && !isHTMLMarquee())) return true; // This code may look a bit strange. Basically width:intrinsic should clamp the size when testing both // min-width and width. max-width is only clamped if it is also intrinsic. Length width = (widthType == MaxWidth) ? style()->maxWidth() : style()->width(); if (width.type() == Intrinsic) return true; // Children of a horizontal marquee do not fill the container by default. // FIXME: Need to deal with MAUTO value properly. It could be vertical. if (parent()->style()->overflowX() == OMARQUEE) { EMarqueeDirection dir = parent()->style()->marqueeDirection(); if (dir == MAUTO || dir == MFORWARD || dir == MBACKWARD || dir == MLEFT || dir == MRIGHT) return true; } // Flexible horizontal boxes lay out children at their intrinsic widths. Also vertical boxes // that don't stretch their kids lay out their children at their intrinsic widths. if (parent()->isFlexibleBox() && (parent()->style()->boxOrient() == HORIZONTAL || parent()->style()->boxAlign() != BSTRETCH)) return true; return false; } void RenderBox::calcHorizontalMargins(const Length& ml, const Length& mr, int cw) { if (isFloating() || isInline()) // Inline blocks/tables and floats don't have their margins increased. { m_marginLeft = ml.calcMinValue(cw); m_marginRight = mr.calcMinValue(cw); } else { if ( (ml.isAuto() && mr.isAuto() && m_widthstyle()->textAlign() == WEBKIT_CENTER) ) { m_marginLeft = (cw - m_width)/2; if (m_marginLeft<0) m_marginLeft=0; m_marginRight = cw - m_width - m_marginLeft; } else if ( (mr.isAuto() && m_widthstyle()->direction() == RTL && containingBlock()->style()->textAlign() == WEBKIT_LEFT)) { m_marginLeft = ml.calcValue(cw); m_marginRight = cw - m_width - m_marginLeft; } else if ( (ml.isAuto() && m_widthstyle()->direction() == LTR && containingBlock()->style()->textAlign() == WEBKIT_RIGHT)) { m_marginRight = mr.calcValue(cw); m_marginLeft = cw - m_width - m_marginRight; } else { // this makes auto margins 0 if we failed a m_widthisFlexibleBox() && parent()->style()->boxOrient() == HORIZONTAL; bool stretching = parent()->style()->boxAlign() == BSTRETCH; bool treatAsReplaced = isReplaced() && !isInlineBlockOrInlineTable() && (!inHorizontalBox || !stretching); bool checkMinMaxHeight = false; // The parent box is flexing us, so it has increased or decreased our height. We have to // grab our cached flexible height. if (m_overrideSize != -1 && parent()->isFlexibleBox() && parent()->style()->boxOrient() == VERTICAL && parent()->isFlexingChildren()) h = Length(m_overrideSize - borderTop() - borderBottom() - paddingTop() - paddingBottom(), Fixed); else if (treatAsReplaced) h = Length(calcReplacedHeight(), Fixed); else { h = style()->height(); checkMinMaxHeight = true; } // Block children of horizontal flexible boxes fill the height of the box. if (h.isAuto() && parent()->isFlexibleBox() && parent()->style()->boxOrient() == HORIZONTAL && parent()->isStretchingChildren()) { h = Length(parent()->contentHeight() - marginTop() - marginBottom() - borderTop() - paddingTop() - borderBottom() - paddingBottom(), Fixed); checkMinMaxHeight = false; } int height; if (checkMinMaxHeight) { height = calcHeightUsing(style()->height()); if (height == -1) height = m_height; int minH = calcHeightUsing(style()->minHeight()); // Leave as -1 if unset. int maxH = style()->maxHeight().value() == undefinedLength ? height : calcHeightUsing(style()->maxHeight()); if (maxH == -1) maxH = height; height = min(maxH, height); height = max(minH, height); } else // The only times we don't check min/max height are when a fixed length has // been given as an override. Just use that. The value has already been adjusted // for box-sizing. height = h.value() + borderTop() + borderBottom() + paddingTop() + paddingBottom(); m_height = height; } // WinIE quirk: The block always fills the entire canvas in quirks mode. The always fills the // block in quirks mode. Only apply this quirk if the block is normal flow and no height // is specified. if (stretchesToViewHeight()) { int margins = collapsedMarginTop() + collapsedMarginBottom(); int visHeight = view()->frameView()->visibleHeight(); if (isRoot()) m_height = max(m_height, visHeight - margins); else m_height = max(m_height, visHeight - (margins + parent()->marginTop() + parent()->marginBottom() + parent()->borderTop() + parent()->borderBottom() + parent()->paddingTop() + parent()->paddingBottom())); } } int RenderBox::calcHeightUsing(const Length& h) { int height = -1; if (!h.isAuto()) { if (h.isFixed()) height = h.value(); else if (h.isPercent()) height = calcPercentageHeight(h); if (height != -1) { height = calcBorderBoxHeight(height); return height; } } return height; } int RenderBox::calcPercentageHeight(const Length& height) { int result = -1; bool includeBorderPadding = isTable(); RenderBlock* cb = containingBlock(); if (style()->htmlHacks()) { // In quirks mode, blocks with auto height are skipped, and we keep looking for an enclosing // block that may have a specified height and then use it. In strict mode, this violates the // specification, which states that percentage heights just revert to auto if the containing // block has an auto height. for ( ; !cb->isRenderView() && !cb->isBody() && !cb->isTableCell() && !cb->isPositioned() && cb->style()->height().isAuto(); cb = cb->containingBlock()); } // Table cells violate what the CSS spec says to do with heights. Basically we // don't care if the cell specified a height or not. We just always make ourselves // be a percentage of the cell's current content height. if (cb->isTableCell()) { result = cb->overrideSize(); if (result == -1) { // Normally we would let the cell size intrinsically, but scrolling overflow has to be // treated differently, since WinIE lets scrolled overflow regions shrink as needed. // While we can't get all cases right, we can at least detect when the cell has a specified // height or when the table has a specified height. In these cases we want to initially have // no size and allow the flexing of the table or the cell to its specified height to cause us // to grow to fill the space. This could end up being wrong in some cases, but it is // preferable to the alternative (sizing intrinsically and making the row end up too big). RenderTableCell* cell = static_cast(cb); if (scrollsOverflowY() && (!cell->style()->height().isAuto() || !cell->table()->style()->height().isAuto())) return 0; return -1; } includeBorderPadding = true; } // Otherwise we only use our percentage height if our containing block had a specified // height. else if (cb->style()->height().isFixed()) result = cb->calcContentBoxHeight(cb->style()->height().value()); else if (cb->style()->height().isPercent()) { // We need to recur and compute the percentage height for our containing block. result = cb->calcPercentageHeight(cb->style()->height()); if (result != -1) result = cb->calcContentBoxHeight(result); } else if (cb->isRenderView() || (cb->isBody() && style()->htmlHacks()) || (cb->isPositioned() && !(cb->style()->top().isAuto() || cb->style()->bottom().isAuto()))) { // Don't allow this to affect the block' m_height member variable, since this // can get called while the block is still laying out its kids. int oldHeight = cb->height(); cb->calcHeight(); result = cb->contentHeight(); cb->setHeight(oldHeight); } else if (cb->isRoot() && isPositioned()) // Match the positioned objects behavior, which is that positioned objects will fill their viewport // always. Note we could only hit this case by recurring into calcPercentageHeight on a positioned containing block. result = cb->calcContentBoxHeight(cb->availableHeight()); if (result != -1) { result = height.calcValue(result); if (includeBorderPadding) { // It is necessary to use the border-box to match WinIE's broken // box model. This is essential for sizing inside // table cells using percentage heights. result -= (borderTop() + paddingTop() + borderBottom() + paddingBottom()); result = max(0, result); } } return result; } int RenderBox::calcReplacedWidth() const { int width = calcReplacedWidthUsing(style()->width()); int minW = calcReplacedWidthUsing(style()->minWidth()); int maxW = style()->maxWidth().value() == undefinedLength ? width : calcReplacedWidthUsing(style()->maxWidth()); return max(minW, min(width, maxW)); } int RenderBox::calcReplacedWidthUsing(Length width) const { switch (width.type()) { case Fixed: return calcContentBoxWidth(width.value()); case Percent: { const int cw = containingBlockWidth(); if (cw > 0) return calcContentBoxWidth(width.calcMinValue(cw)); } // fall through default: return intrinsicWidth(); } } int RenderBox::calcReplacedHeight() const { int height = calcReplacedHeightUsing(style()->height()); int minH = calcReplacedHeightUsing(style()->minHeight()); int maxH = style()->maxHeight().value() == undefinedLength ? height : calcReplacedHeightUsing(style()->maxHeight()); return max(minH, min(height, maxH)); } int RenderBox::calcReplacedHeightUsing(Length height) const { switch (height.type()) { case Fixed: return calcContentBoxHeight(height.value()); case Percent: { RenderBlock* cb = containingBlock(); if (cb->isPositioned() && cb->style()->height().isAuto() && !(cb->style()->top().isAuto() || cb->style()->bottom().isAuto())) { int oldHeight = cb->height(); cb->calcHeight(); int newHeight = cb->calcContentBoxHeight(cb->contentHeight()); cb->setHeight(oldHeight); return calcContentBoxHeight(height.calcValue(newHeight)); } // It is necessary to use the border-box to match WinIE's broken // box model. This is essential for sizing inside // table cells using percentage heights. if (cb->isTableCell() && (cb->style()->height().isAuto() || cb->style()->height().isPercent())) return height.calcValue(cb->availableHeight() - (borderTop() + borderBottom() + paddingTop() + paddingBottom())); return calcContentBoxHeight(height.calcValue(cb->availableHeight())); } default: return intrinsicHeight(); } } int RenderBox::availableHeight() const { return availableHeightUsing(style()->height()); } int RenderBox::availableHeightUsing(const Length& h) const { if (h.isFixed()) return calcContentBoxHeight(h.value()); if (isRenderView()) return static_cast(this)->frameView()->visibleHeight(); // We need to stop here, since we don't want to increase the height of the table // artificially. We're going to rely on this cell getting expanded to some new // height, and then when we lay out again we'll use the calculation below. if (isTableCell() && (h.isAuto() || h.isPercent())) return overrideSize() - (borderLeft() + borderRight() + paddingLeft() + paddingRight()); if (h.isPercent()) return calcContentBoxHeight(h.calcValue(containingBlock()->availableHeight())); return containingBlock()->availableHeight(); } void RenderBox::calcVerticalMargins() { if( isTableCell() ) { // table margins are basically infinite m_marginTop = TABLECELLMARGIN; m_marginBottom = TABLECELLMARGIN; return; } Length tm = style()->marginTop(); Length bm = style()->marginBottom(); // margins are calculated with respect to the _width_ of // the containing block (8.3) int cw = containingBlock()->contentWidth(); m_marginTop = tm.calcMinValue(cw); m_marginBottom = bm.calcMinValue(cw); } void RenderBox::setStaticX(int staticX) { m_staticX = staticX; } void RenderBox::setStaticY(int staticY) { m_staticY = staticY; } int RenderBox::containingBlockWidthForPositioned(const RenderObject* containingBlock) const { if (containingBlock->isInline()) { ASSERT(containingBlock->isRelPositioned()); const RenderFlow* flow = static_cast(containingBlock); InlineFlowBox* first = flow->firstLineBox(); InlineFlowBox* last = flow->lastLineBox(); // If the containing block is empty, return a width of 0. if (!first || !last) return 0; int fromLeft; int fromRight; if (containingBlock->style()->direction() == LTR) { fromLeft = first->xPos() + first->borderLeft(); fromRight = last->xPos() + last->width() - last->borderRight(); } else { fromRight = first->xPos() + first->width() - first->borderRight(); fromLeft = last->xPos() + last->borderLeft(); } return max(0, (fromRight - fromLeft)); } return containingBlock->width() - containingBlock->borderLeft() - containingBlock->borderRight(); } int RenderBox::containingBlockHeightForPositioned(const RenderObject* containingBlock) const { // Even in strict mode (where we don't grow the root to fill the viewport) other browsers // position as though the root fills the viewport. if (containingBlock->isRoot()) return containingBlock->availableHeight(); return containingBlock->height() - containingBlock->borderTop() - containingBlock->borderBottom(); } void RenderBox::calcAbsoluteHorizontal() { if (isReplaced()) { calcAbsoluteHorizontalReplaced(); return; } // QUESTIONS // FIXME 1: Which RenderObject's 'direction' property should used: the // containing block (cb) as the spec seems to imply, the parent (parent()) as // was previously done in calculating the static distances, or ourself, which // was also previously done for deciding what to override when you had // over-constrained margins? Also note that the container block is used // in similar situations in other parts of the RenderBox class (see calcWidth() // and calcHorizontalMargins()). For now we are using the parent for quirks // mode and the containing block for strict mode. // FIXME 2: Should we still deal with these the cases of 'left' or 'right' having // the type 'static' in determining whether to calculate the static distance? // NOTE: 'static' is not a legal value for 'left' or 'right' as of CSS 2.1. // FIXME 3: Can perhaps optimize out cases when max-width/min-width are greater // than or less than the computed m_width. Be careful of box-sizing and // percentage issues. // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.3.7 "Absolutely positioned, non-replaced elements" // // (block-style-comments in this function and in calcAbsoluteHorizontalValues() // correspond to text from the spec) // We don't use containingBlock(), since we may be positioned by an enclosing // relative positioned inline. const RenderObject* containerBlock = container(); const int containerWidth = containingBlockWidthForPositioned(containerBlock); // To match WinIE, in quirks mode use the parent's 'direction' property // instead of the the container block's. TextDirection containerDirection = (style()->htmlHacks()) ? parent()->style()->direction() : containerBlock->style()->direction(); const int bordersPlusPadding = borderLeft() + borderRight() + paddingLeft() + paddingRight(); const Length marginLeft = style()->marginLeft(); const Length marginRight = style()->marginRight(); Length left = style()->left(); Length right = style()->right(); /*---------------------------------------------------------------------------*\ * For the purposes of this section and the next, the term "static position" * (of an element) refers, roughly, to the position an element would have had * in the normal flow. More precisely: * * * The static position for 'left' is the distance from the left edge of the * containing block to the left margin edge of a hypothetical box that would * have been the first box of the element if its 'position' property had * been 'static' and 'float' had been 'none'. The value is negative if the * hypothetical box is to the left of the containing block. * * The static position for 'right' is the distance from the right edge of the * containing block to the right margin edge of the same hypothetical box as * above. The value is positive if the hypothetical box is to the left of the * containing block's edge. * * But rather than actually calculating the dimensions of that hypothetical box, * user agents are free to make a guess at its probable position. * * For the purposes of calculating the static position, the containing block of * fixed positioned elements is the initial containing block instead of the * viewport, and all scrollable boxes should be assumed to be scrolled to their * origin. \*---------------------------------------------------------------------------*/ // see FIXME 2 // Calculate the static distance if needed. if (left.isAuto() && right.isAuto()) { if (containerDirection == LTR) { // 'm_staticX' should already have been set through layout of the parent. int staticPosition = m_staticX - containerBlock->borderLeft(); for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) staticPosition += po->xPos(); left.setValue(Fixed, staticPosition); } else { RenderObject* po = parent(); // 'm_staticX' should already have been set through layout of the parent. int staticPosition = m_staticX + containerWidth + containerBlock->borderRight() - po->width(); for (; po && po != containerBlock; po = po->parent()) staticPosition -= po->xPos(); right.setValue(Fixed, staticPosition); } } // Calculate constraint equation values for 'width' case. calcAbsoluteHorizontalValues(style()->width(), containerBlock, containerDirection, containerWidth, bordersPlusPadding, left, right, marginLeft, marginRight, m_width, m_marginLeft, m_marginRight, m_x); // Calculate constraint equation values for 'max-width' case.calcContentBoxWidth(width.calcValue(containerWidth)); if (style()->maxWidth().value() != undefinedLength) { int maxWidth; int maxMarginLeft; int maxMarginRight; int maxXPos; calcAbsoluteHorizontalValues(style()->maxWidth(), containerBlock, containerDirection, containerWidth, bordersPlusPadding, left, right, marginLeft, marginRight, maxWidth, maxMarginLeft, maxMarginRight, maxXPos); if (m_width > maxWidth) { m_width = maxWidth; m_marginLeft = maxMarginLeft; m_marginRight = maxMarginRight; m_x = maxXPos; } } // Calculate constraint equation values for 'min-width' case. if (style()->minWidth().value()) { int minWidth; int minMarginLeft; int minMarginRight; int minXPos; calcAbsoluteHorizontalValues(style()->minWidth(), containerBlock, containerDirection, containerWidth, bordersPlusPadding, left, right, marginLeft, marginRight, minWidth, minMarginLeft, minMarginRight, minXPos); if (m_width < minWidth) { m_width = minWidth; m_marginLeft = minMarginLeft; m_marginRight = minMarginRight; m_x = minXPos; } } // Put m_width into correct form. m_width += bordersPlusPadding; } void RenderBox::calcAbsoluteHorizontalValues(Length width, const RenderObject* containerBlock, TextDirection containerDirection, const int containerWidth, const int bordersPlusPadding, const Length left, const Length right, const Length marginLeft, const Length marginRight, int& widthValue, int& marginLeftValue, int& marginRightValue, int& xPos) { // 'left' and 'right' cannot both be 'auto' because one would of been // converted to the static postion already ASSERT(!(left.isAuto() && right.isAuto())); int leftValue = 0; bool widthIsAuto = width.isIntrinsicOrAuto(); bool leftIsAuto = left.isAuto(); bool rightIsAuto = right.isAuto(); if (!leftIsAuto && !widthIsAuto && !rightIsAuto) { /*-----------------------------------------------------------------------*\ * If none of the three is 'auto': If both 'margin-left' and 'margin- * right' are 'auto', solve the equation under the extra constraint that * the two margins get equal values, unless this would make them negative, * in which case when direction of the containing block is 'ltr' ('rtl'), * set 'margin-left' ('margin-right') to zero and solve for 'margin-right' * ('margin-left'). If one of 'margin-left' or 'margin-right' is 'auto', * solve the equation for that value. If the values are over-constrained, * ignore the value for 'left' (in case the 'direction' property of the * containing block is 'rtl') or 'right' (in case 'direction' is 'ltr') * and solve for that value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to solve for 'right' in the over constrained // case because the value is not used for any further calculations. leftValue = left.calcValue(containerWidth); widthValue = calcContentBoxWidth(width.calcValue(containerWidth)); const int availableSpace = containerWidth - (leftValue + widthValue + right.calcValue(containerWidth) + bordersPlusPadding); // Margins are now the only unknown if (marginLeft.isAuto() && marginRight.isAuto()) { // Both margins auto, solve for equality if (availableSpace >= 0) { marginLeftValue = availableSpace / 2; // split the diference marginRightValue = availableSpace - marginLeftValue; // account for odd valued differences } else { // see FIXME 1 if (containerDirection == LTR) { marginLeftValue = 0; marginRightValue = availableSpace; // will be negative } else { marginLeftValue = availableSpace; // will be negative marginRightValue = 0; } } } else if (marginLeft.isAuto()) { // Solve for left margin marginRightValue = marginRight.calcValue(containerWidth); marginLeftValue = availableSpace - marginRightValue; } else if (marginRight.isAuto()) { // Solve for right margin marginLeftValue = marginLeft.calcValue(containerWidth); marginRightValue = availableSpace - marginLeftValue; } else { // Over-constrained, solve for left if direction is RTL marginLeftValue = marginLeft.calcValue(containerWidth); marginRightValue = marginRight.calcValue(containerWidth); // see FIXME 1 -- used to be "this->style()->direction()" if (containerDirection == RTL) leftValue = (availableSpace + leftValue) - marginLeftValue - marginRightValue; } } else { /*--------------------------------------------------------------------*\ * Otherwise, set 'auto' values for 'margin-left' and 'margin-right' * to 0, and pick the one of the following six rules that applies. * * 1. 'left' and 'width' are 'auto' and 'right' is not 'auto', then the * width is shrink-to-fit. Then solve for 'left' * * OMIT RULE 2 AS IT SHOULD NEVER BE HIT * ------------------------------------------------------------------ * 2. 'left' and 'right' are 'auto' and 'width' is not 'auto', then if * the 'direction' property of the containing block is 'ltr' set * 'left' to the static position, otherwise set 'right' to the * static position. Then solve for 'left' (if 'direction is 'rtl') * or 'right' (if 'direction' is 'ltr'). * ------------------------------------------------------------------ * * 3. 'width' and 'right' are 'auto' and 'left' is not 'auto', then the * width is shrink-to-fit . Then solve for 'right' * 4. 'left' is 'auto', 'width' and 'right' are not 'auto', then solve * for 'left' * 5. 'width' is 'auto', 'left' and 'right' are not 'auto', then solve * for 'width' * 6. 'right' is 'auto', 'left' and 'width' are not 'auto', then solve * for 'right' * * Calculation of the shrink-to-fit width is similar to calculating the * width of a table cell using the automatic table layout algorithm. * Roughly: calculate the preferred width by formatting the content * without breaking lines other than where explicit line breaks occur, * and also calculate the preferred minimum width, e.g., by trying all * possible line breaks. CSS 2.1 does not define the exact algorithm. * Thirdly, calculate the available width: this is found by solving * for 'width' after setting 'left' (in case 1) or 'right' (in case 3) * to 0. * * Then the shrink-to-fit width is: * min(max(preferred minimum width, available width), preferred width). \*--------------------------------------------------------------------*/ // NOTE: For rules 3 and 6 it is not necessary to solve for 'right' // because the value is not used for any further calculations. // Calculate margins, 'auto' margins are ignored. marginLeftValue = marginLeft.calcMinValue(containerWidth); marginRightValue = marginRight.calcMinValue(containerWidth); const int availableSpace = containerWidth - (marginLeftValue + marginRightValue + bordersPlusPadding); // FIXME: Is there a faster way to find the correct case? // Use rule/case that applies. if (leftIsAuto && widthIsAuto && !rightIsAuto) { // RULE 1: (use shrink-to-fit for width, and solve of left) int rightValue = right.calcValue(containerWidth); // FIXME: would it be better to have shrink-to-fit in one step? int preferredWidth = m_maxWidth - bordersPlusPadding; int preferredMinWidth = m_minWidth - bordersPlusPadding; int availableWidth = availableSpace - rightValue; widthValue = min(max(preferredMinWidth, availableWidth), preferredWidth); leftValue = availableSpace - (widthValue + rightValue); } else if (!leftIsAuto && widthIsAuto && rightIsAuto) { // RULE 3: (use shrink-to-fit for width, and no need solve of right) leftValue = left.calcValue(containerWidth); // FIXME: would it be better to have shrink-to-fit in one step? int preferredWidth = m_maxWidth - bordersPlusPadding; int preferredMinWidth = m_minWidth - bordersPlusPadding; int availableWidth = availableSpace - leftValue; widthValue = min(max(preferredMinWidth, availableWidth), preferredWidth); } else if (leftIsAuto && !width.isAuto() && !rightIsAuto) { // RULE 4: (solve for left) widthValue = calcContentBoxWidth(width.calcValue(containerWidth)); leftValue = availableSpace - (widthValue + right.calcValue(containerWidth)); } else if (!leftIsAuto && widthIsAuto && !rightIsAuto) { // RULE 5: (solve for width) leftValue = left.calcValue(containerWidth); widthValue = availableSpace - (leftValue + right.calcValue(containerWidth)); } else if (!leftIsAuto&& !widthIsAuto && rightIsAuto) { // RULE 6: (no need solve for right) leftValue = left.calcValue(containerWidth); widthValue = calcContentBoxWidth(width.calcValue(containerWidth)); } } // Use computed values to calculate the horizontal position. // FIXME: This hack is needed to calculate the xPos for a 'rtl' relatively // positioned, inline containing block because right now, it is using the xPos // of the first line box when really it should use the last line box. When // this is fixed elsewhere, this block should be removed. if (containerBlock->isInline() && containerBlock->style()->direction() == RTL) { const RenderFlow* flow = static_cast(containerBlock); InlineFlowBox* firstLine = flow->firstLineBox(); InlineFlowBox* lastLine = flow->lastLineBox(); if (firstLine && lastLine && firstLine != lastLine) { xPos = leftValue + marginLeftValue + lastLine->borderLeft() + (lastLine->xPos() - firstLine->xPos()); return; } } xPos = leftValue + marginLeftValue + containerBlock->borderLeft(); } void RenderBox::calcAbsoluteVertical() { if (isReplaced()) { calcAbsoluteVerticalReplaced(); return; } // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.6.4 "Absolutely positioned, non-replaced elements" // // (block-style-comments in this function and in calcAbsoluteVerticalValues() // correspond to text from the spec) // We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline. const RenderObject* containerBlock = container(); const int containerHeight = containingBlockHeightForPositioned(containerBlock); const int bordersPlusPadding = borderTop() + borderBottom() + paddingTop() + paddingBottom(); const Length marginTop = style()->marginTop(); const Length marginBottom = style()->marginBottom(); Length top = style()->top(); Length bottom = style()->bottom(); /*---------------------------------------------------------------------------*\ * For the purposes of this section and the next, the term "static position" * (of an element) refers, roughly, to the position an element would have had * in the normal flow. More precisely, the static position for 'top' is the * distance from the top edge of the containing block to the top margin edge * of a hypothetical box that would have been the first box of the element if * its 'position' property had been 'static' and 'float' had been 'none'. The * value is negative if the hypothetical box is above the containing block. * * But rather than actually calculating the dimensions of that hypothetical * box, user agents are free to make a guess at its probable position. * * For the purposes of calculating the static position, the containing block * of fixed positioned elements is the initial containing block instead of * the viewport. \*---------------------------------------------------------------------------*/ // see FIXME 2 // Calculate the static distance if needed. if (top.isAuto() && bottom.isAuto()) { // m_staticY should already have been set through layout of the parent() int staticTop = m_staticY - containerBlock->borderTop(); for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) { if (!po->isTableRow()) staticTop += po->yPos(); } top.setValue(Fixed, staticTop); } int height; // Needed to compute overflow. // Calculate constraint equation values for 'height' case. calcAbsoluteVerticalValues(style()->height(), containerBlock, containerHeight, bordersPlusPadding, top, bottom, marginTop, marginBottom, height, m_marginTop, m_marginBottom, m_y); // Avoid doing any work in the common case (where the values of min-height and max-height are their defaults). // see FIXME 3 // Calculate constraint equation values for 'max-height' case. if (style()->maxHeight().value() != undefinedLength) { int maxHeight; int maxMarginTop; int maxMarginBottom; int maxYPos; calcAbsoluteVerticalValues(style()->maxHeight(), containerBlock, containerHeight, bordersPlusPadding, top, bottom, marginTop, marginBottom, maxHeight, maxMarginTop, maxMarginBottom, maxYPos); if (height > maxHeight) { height = maxHeight; m_marginTop = maxMarginTop; m_marginBottom = maxMarginBottom; m_y = maxYPos; } } // Calculate constraint equation values for 'min-height' case. if (style()->minHeight().value()) { int minHeight; int minMarginTop; int minMarginBottom; int minYPos; calcAbsoluteVerticalValues(style()->minHeight(), containerBlock, containerHeight, bordersPlusPadding, top, bottom, marginTop, marginBottom, minHeight, minMarginTop, minMarginBottom, minYPos); if (height < minHeight) { height = minHeight; m_marginTop = minMarginTop; m_marginBottom = minMarginBottom; m_y = minYPos; } } height += bordersPlusPadding; // If our natural/content height exceeds the new height once we've set it, then we // need to make sure to update overflow to track the spillout. if (m_height > height) setOverflowHeight(m_height); // Set final height value. m_height = height; } void RenderBox::calcAbsoluteVerticalValues(Length height, const RenderObject* containerBlock, const int containerHeight, const int bordersPlusPadding, const Length top, const Length bottom, const Length marginTop, const Length marginBottom, int& heightValue, int& marginTopValue, int& marginBottomValue, int& yPos) { // 'top' and 'bottom' cannot both be 'auto' because 'top would of been // converted to the static position in calcAbsoluteVertical() ASSERT(!(top.isAuto() && bottom.isAuto())); int contentHeight = m_height - bordersPlusPadding; int topValue = 0; bool heightIsAuto = height.isAuto(); bool topIsAuto = top.isAuto(); bool bottomIsAuto = bottom.isAuto(); // Height is never unsolved for tables. if (isTable()) { height.setValue(Fixed, contentHeight); heightIsAuto = false; } if (!topIsAuto && !heightIsAuto && !bottomIsAuto) { /*-----------------------------------------------------------------------*\ * If none of the three are 'auto': If both 'margin-top' and 'margin- * bottom' are 'auto', solve the equation under the extra constraint that * the two margins get equal values. If one of 'margin-top' or 'margin- * bottom' is 'auto', solve the equation for that value. If the values * are over-constrained, ignore the value for 'bottom' and solve for that * value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to solve for 'bottom' in the over constrained // case because the value is not used for any further calculations. heightValue = calcContentBoxHeight(height.calcValue(containerHeight)); topValue = top.calcValue(containerHeight); const int availableSpace = containerHeight - (topValue + heightValue + bottom.calcValue(containerHeight) + bordersPlusPadding); // Margins are now the only unknown if (marginTop.isAuto() && marginBottom.isAuto()) { // Both margins auto, solve for equality // NOTE: This may result in negative values. marginTopValue = availableSpace / 2; // split the diference marginBottomValue = availableSpace - marginTopValue; // account for odd valued differences } else if (marginTop.isAuto()) { // Solve for top margin marginBottomValue = marginBottom.calcValue(containerHeight); marginTopValue = availableSpace - marginBottomValue; } else if (marginBottom.isAuto()) { // Solve for bottom margin marginTopValue = marginTop.calcValue(containerHeight); marginBottomValue = availableSpace - marginTopValue; } else { // Over-constrained, (no need solve for bottom) marginTopValue = marginTop.calcValue(containerHeight); marginBottomValue = marginBottom.calcValue(containerHeight); } } else { /*--------------------------------------------------------------------*\ * Otherwise, set 'auto' values for 'margin-top' and 'margin-bottom' * to 0, and pick the one of the following six rules that applies. * * 1. 'top' and 'height' are 'auto' and 'bottom' is not 'auto', then * the height is based on the content, and solve for 'top'. * * OMIT RULE 2 AS IT SHOULD NEVER BE HIT * ------------------------------------------------------------------ * 2. 'top' and 'bottom' are 'auto' and 'height' is not 'auto', then * set 'top' to the static position, and solve for 'bottom'. * ------------------------------------------------------------------ * * 3. 'height' and 'bottom' are 'auto' and 'top' is not 'auto', then * the height is based on the content, and solve for 'bottom'. * 4. 'top' is 'auto', 'height' and 'bottom' are not 'auto', and * solve for 'top'. * 5. 'height' is 'auto', 'top' and 'bottom' are not 'auto', and * solve for 'height'. * 6. 'bottom' is 'auto', 'top' and 'height' are not 'auto', and * solve for 'bottom'. \*--------------------------------------------------------------------*/ // NOTE: For rules 3 and 6 it is not necessary to solve for 'bottom' // because the value is not used for any further calculations. // Calculate margins, 'auto' margins are ignored. marginTopValue = marginTop.calcMinValue(containerHeight); marginBottomValue = marginBottom.calcMinValue(containerHeight); const int availableSpace = containerHeight - (marginTopValue + marginBottomValue + bordersPlusPadding); // Use rule/case that applies. if (topIsAuto && heightIsAuto && !bottomIsAuto) { // RULE 1: (height is content based, solve of top) heightValue = contentHeight; topValue = availableSpace - (heightValue + bottom.calcValue(containerHeight)); } else if (!topIsAuto && heightIsAuto && bottomIsAuto) { // RULE 3: (height is content based, no need solve of bottom) topValue = top.calcValue(containerHeight); heightValue = contentHeight; } else if (topIsAuto && !heightIsAuto && !bottomIsAuto) { // RULE 4: (solve of top) heightValue = calcContentBoxHeight(height.calcValue(containerHeight)); topValue = availableSpace - (heightValue + bottom.calcValue(containerHeight)); } else if (!topIsAuto && heightIsAuto && !bottomIsAuto) { // RULE 5: (solve of height) topValue = top.calcValue(containerHeight); heightValue = max(0, availableSpace - (topValue + bottom.calcValue(containerHeight))); } else if (!topIsAuto && !heightIsAuto && bottomIsAuto) { // RULE 6: (no need solve of bottom) heightValue = calcContentBoxHeight(height.calcValue(containerHeight)); topValue = top.calcValue(containerHeight); } } // Use computed values to calculate the vertical position. yPos = topValue + marginTopValue + containerBlock->borderTop(); } void RenderBox::calcAbsoluteHorizontalReplaced() { // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.3.8 "Absolutly positioned, replaced elements" // // (block-style-comments in this function correspond to text from the spec and // the numbers correspond to numbers in spec) // We don't use containingBlock(), since we may be positioned by an enclosing // relative positioned inline. const RenderObject* containerBlock = container(); const int containerWidth = containingBlockWidthForPositioned(containerBlock); // To match WinIE, in quirks mode use the parent's 'direction' property // instead of the the container block's. TextDirection containerDirection = (style()->htmlHacks()) ? parent()->style()->direction() : containerBlock->style()->direction(); // Variables to solve. Length left = style()->left(); Length right = style()->right(); Length marginLeft = style()->marginLeft(); Length marginRight = style()->marginRight(); /*-----------------------------------------------------------------------*\ * 1. The used value of 'width' is determined as for inline replaced * elements. \*-----------------------------------------------------------------------*/ // NOTE: This value of width is FINAL in that the min/max width calculations // are dealt with in calcReplacedWidth(). This means that the steps to produce // correct max/min in the non-replaced version, are not necessary. m_width = calcReplacedWidth() + borderLeft() + borderRight() + paddingLeft() + paddingRight(); const int availableSpace = containerWidth - m_width; /*-----------------------------------------------------------------------*\ * 2. If both 'left' and 'right' have the value 'auto', then if 'direction' * of the containing block is 'ltr', set 'left' to the static position; * else if 'direction' is 'rtl', set 'right' to the static position. \*-----------------------------------------------------------------------*/ // see FIXME 2 if (left.isAuto() && right.isAuto()) { // see FIXME 1 if (containerDirection == LTR) { // 'm_staticX' should already have been set through layout of the parent. int staticPosition = m_staticX - containerBlock->borderLeft(); for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) staticPosition += po->xPos(); left.setValue(Fixed, staticPosition); } else { RenderObject* po = parent(); // 'm_staticX' should already have been set through layout of the parent. int staticPosition = m_staticX + containerWidth + containerBlock->borderRight() - po->width(); for (; po && po != containerBlock; po = po->parent()) staticPosition -= po->xPos(); right.setValue(Fixed, staticPosition); } } /*-----------------------------------------------------------------------*\ * 3. If 'left' or 'right' are 'auto', replace any 'auto' on 'margin-left' * or 'margin-right' with '0'. \*-----------------------------------------------------------------------*/ if (left.isAuto() || right.isAuto()) { if (marginLeft.isAuto()) marginLeft.setValue(Fixed, 0); if (marginRight.isAuto()) marginRight.setValue(Fixed, 0); } /*-----------------------------------------------------------------------*\ * 4. If at this point both 'margin-left' and 'margin-right' are still * 'auto', solve the equation under the extra constraint that the two * margins must get equal values, unless this would make them negative, * in which case when the direction of the containing block is 'ltr' * ('rtl'), set 'margin-left' ('margin-right') to zero and solve for * 'margin-right' ('margin-left'). \*-----------------------------------------------------------------------*/ int leftValue = 0; int rightValue = 0; if (marginLeft.isAuto() && marginRight.isAuto()) { // 'left' and 'right' cannot be 'auto' due to step 3 ASSERT(!(left.isAuto() && right.isAuto())); leftValue = left.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); int difference = availableSpace - (leftValue + rightValue); if (difference > 0) { m_marginLeft = difference / 2; // split the diference m_marginRight = difference - m_marginLeft; // account for odd valued differences } else { // see FIXME 1 if (containerDirection == LTR) { m_marginLeft = 0; m_marginRight = difference; // will be negative } else { m_marginLeft = difference; // will be negative m_marginRight = 0; } } /*-----------------------------------------------------------------------*\ * 5. If at this point there is an 'auto' left, solve the equation for * that value. \*-----------------------------------------------------------------------*/ } else if (left.isAuto()) { m_marginLeft = marginLeft.calcValue(containerWidth); m_marginRight = marginRight.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); // Solve for 'left' leftValue = availableSpace - (rightValue + m_marginLeft + m_marginRight); } else if (right.isAuto()) { m_marginLeft = marginLeft.calcValue(containerWidth); m_marginRight = marginRight.calcValue(containerWidth); leftValue = left.calcValue(containerWidth); // Solve for 'right' rightValue = availableSpace - (leftValue + m_marginLeft + m_marginRight); } else if (marginLeft.isAuto()) { m_marginRight = marginRight.calcValue(containerWidth); leftValue = left.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); // Solve for 'margin-left' m_marginLeft = availableSpace - (leftValue + rightValue + m_marginRight); } else if (marginRight.isAuto()) { m_marginLeft = marginLeft.calcValue(containerWidth); leftValue = left.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); // Solve for 'margin-right' m_marginRight = availableSpace - (leftValue + rightValue + m_marginLeft); } else { // Nothing is 'auto', just calculate the values. m_marginLeft = marginLeft.calcValue(containerWidth); m_marginRight = marginRight.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); leftValue = left.calcValue(containerWidth); } /*-----------------------------------------------------------------------*\ * 6. If at this point the values are over-constrained, ignore the value * for either 'left' (in case the 'direction' property of the * containing block is 'rtl') or 'right' (in case 'direction' is * 'ltr') and solve for that value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to solve for 'right' when the direction is // LTR because the value is not used. int totalWidth = m_width + leftValue + rightValue + m_marginLeft + m_marginRight; if (totalWidth > containerWidth && (containerDirection == RTL)) leftValue = containerWidth - (totalWidth - leftValue); // Use computed values to calculate the horizontal position. // FIXME: This hack is needed to calculate the xPos for a 'rtl' relatively // positioned, inline containing block because right now, it is using the xPos // of the first line box when really it should use the last line box. When // this is fixed elsewhere, this block should be removed. if (containerBlock->isInline() && containerBlock->style()->direction() == RTL) { const RenderFlow* flow = static_cast(containerBlock); InlineFlowBox* firstLine = flow->firstLineBox(); InlineFlowBox* lastLine = flow->lastLineBox(); if (firstLine && lastLine && firstLine != lastLine) { m_x = leftValue + m_marginLeft + lastLine->borderLeft() + (lastLine->xPos() - firstLine->xPos()); return; } } m_x = leftValue + m_marginLeft + containerBlock->borderLeft(); } void RenderBox::calcAbsoluteVerticalReplaced() { // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.6.5 "Absolutly positioned, replaced elements" // // (block-style-comments in this function correspond to text from the spec and // the numbers correspond to numbers in spec) // We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline. const RenderObject* containerBlock = container(); const int containerHeight = containingBlockHeightForPositioned(containerBlock); // Variables to solve. Length top = style()->top(); Length bottom = style()->bottom(); Length marginTop = style()->marginTop(); Length marginBottom = style()->marginBottom(); /*-----------------------------------------------------------------------*\ * 1. The used value of 'height' is determined as for inline replaced * elements. \*-----------------------------------------------------------------------*/ // NOTE: This value of height is FINAL in that the min/max height calculations // are dealt with in calcReplacedHeight(). This means that the steps to produce // correct max/min in the non-replaced version, are not necessary. m_height = calcReplacedHeight() + borderTop() + borderBottom() + paddingTop() + paddingBottom(); const int availableSpace = containerHeight - m_height; /*-----------------------------------------------------------------------*\ * 2. If both 'top' and 'bottom' have the value 'auto', replace 'top' * with the element's static position. \*-----------------------------------------------------------------------*/ // see FIXME 2 if (top.isAuto() && bottom.isAuto()) { // m_staticY should already have been set through layout of the parent(). int staticTop = m_staticY - containerBlock->borderTop(); for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) { if (!po->isTableRow()) staticTop += po->yPos(); } top.setValue(Fixed, staticTop); } /*-----------------------------------------------------------------------*\ * 3. If 'bottom' is 'auto', replace any 'auto' on 'margin-top' or * 'margin-bottom' with '0'. \*-----------------------------------------------------------------------*/ // FIXME: The spec. says that this step should only be taken when bottom is // auto, but if only top is auto, this makes step 4 impossible. if (top.isAuto() || bottom.isAuto()) { if (marginTop.isAuto()) marginTop.setValue(Fixed, 0); if (marginBottom.isAuto()) marginBottom.setValue(Fixed, 0); } /*-----------------------------------------------------------------------*\ * 4. If at this point both 'margin-top' and 'margin-bottom' are still * 'auto', solve the equation under the extra constraint that the two * margins must get equal values. \*-----------------------------------------------------------------------*/ int topValue = 0; int bottomValue = 0; if (marginTop.isAuto() && marginBottom.isAuto()) { // 'top' and 'bottom' cannot be 'auto' due to step 2 and 3 combinded. ASSERT(!(top.isAuto() || bottom.isAuto())); topValue = top.calcValue(containerHeight); bottomValue = bottom.calcValue(containerHeight); int difference = availableSpace - (topValue + bottomValue); // NOTE: This may result in negative values. m_marginTop = difference / 2; // split the difference m_marginBottom = difference - m_marginTop; // account for odd valued differences /*-----------------------------------------------------------------------*\ * 5. If at this point there is only one 'auto' left, solve the equation * for that value. \*-----------------------------------------------------------------------*/ } else if (top.isAuto()) { m_marginTop = marginTop.calcValue(containerHeight); m_marginBottom = marginBottom.calcValue(containerHeight); bottomValue = bottom.calcValue(containerHeight); // Solve for 'top' topValue = availableSpace - (bottomValue + m_marginTop + m_marginBottom); } else if (bottom.isAuto()) { m_marginTop = marginTop.calcValue(containerHeight); m_marginBottom = marginBottom.calcValue(containerHeight); topValue = top.calcValue(containerHeight); // Solve for 'bottom' // NOTE: It is not necessary to solve for 'bottom' because we don't ever // use the value. } else if (marginTop.isAuto()) { m_marginBottom = marginBottom.calcValue(containerHeight); topValue = top.calcValue(containerHeight); bottomValue = bottom.calcValue(containerHeight); // Solve for 'margin-top' m_marginTop = availableSpace - (topValue + bottomValue + m_marginBottom); } else if (marginBottom.isAuto()) { m_marginTop = marginTop.calcValue(containerHeight); topValue = top.calcValue(containerHeight); bottomValue = bottom.calcValue(containerHeight); // Solve for 'margin-bottom' m_marginBottom = availableSpace - (topValue + bottomValue + m_marginTop); } else { // Nothing is 'auto', just calculate the values. m_marginTop = marginTop.calcValue(containerHeight); m_marginBottom = marginBottom.calcValue(containerHeight); topValue = top.calcValue(containerHeight); // NOTE: It is not necessary to solve for 'bottom' because we don't ever // use the value. } /*-----------------------------------------------------------------------*\ * 6. If at this point the values are over-constrained, ignore the value * for 'bottom' and solve for that value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to do this step because we don't end up using // the value of 'bottom' regardless of whether the values are over-constrained // or not. // Use computed values to calculate the vertical position. m_y = topValue + m_marginTop + containerBlock->borderTop(); } IntRect RenderBox::caretRect(int offset, EAffinity affinity, int* extraWidthToEndOfLine) { // VisiblePositions at offsets inside containers either a) refer to the positions before/after // those containers (tables and select elements) or b) refer to the position inside an empty block. // They never refer to children. // FIXME: Paint the carets inside empty blocks differently than the carets before/after elements. // FIXME: What about border and padding? const int caretWidth = 3; IntRect rect(xPos(), yPos(), caretWidth, m_height); if (offset != 0) rect.move(IntSize(m_width - caretWidth, 0)); if (InlineBox* box = inlineBoxWrapper()) { RootInlineBox* rootBox = box->root(); int top = rootBox->topOverflow(); rect.setY(top); rect.setHeight(rootBox->bottomOverflow() - top); } // If height of box is smaller than font height, use the latter one, // otherwise the caret might become invisible. // // Also, if the box is not a replaced element, always use the font height. // This prevents the "big caret" bug described in: // Deleting all content in a document can result in giant tall-as-window insertion point // // FIXME: ignoring :first-line, missing good reason to take care of int fontHeight = style()->font().height(); if (fontHeight > rect.height() || !isReplaced() && !isTable()) rect.setHeight(fontHeight); RenderObject* cb = containingBlock(); int cbx, cby; if (!cb || !cb->absolutePosition(cbx, cby)) // No point returning a relative position. return IntRect(); if (extraWidthToEndOfLine) *extraWidthToEndOfLine = xPos() + m_width - rect.right(); rect.move(cbx, cby); return rect; } int RenderBox::lowestPosition(bool includeOverflowInterior, bool includeSelf) const { if (!includeSelf || !m_width) return 0; int bottom = m_height; if (isRelPositioned()) bottom += relativePositionOffsetY(); return bottom; } int RenderBox::rightmostPosition(bool includeOverflowInterior, bool includeSelf) const { if (!includeSelf || !m_height) return 0; int right = m_width; if (isRelPositioned()) right += relativePositionOffsetX(); return right; } int RenderBox::leftmostPosition(bool includeOverflowInterior, bool includeSelf) const { if (!includeSelf || !m_height) return m_width; int left = 0; if (isRelPositioned()) left += relativePositionOffsetX(); return left; } }