Apple Certificate Library Functional and Design Specification

Last Update Aug. 30, 2001 by dmitch
1.0
Scope

This document describes both the design and the functionality of the Apple Certificate Library (“CL”) for the OS X platform.

2.0
Functional Specification

This section is targeted towards developers who will use the CL. It focusses on the API provided by the CL, mainly in terms of the certificate fields (components) which this library supports.

In general, the CL performs three functions:

· Assemble X.509 certificates from components expressed in standard CDSA data types, and sign and encode those certificates.

· Verify existing certificates given a public key or another certificate.

· Decode and parse existing X.509 certificates, allowing an app to access (read) individual fields.

Currently Unsupported Functions:
· Per the CDSA spec, the CL operates only on certificates in memory. It knows nothing of persistent storage, LDAP servers, or web-resident certificate authorities. Operations requiring the use of these resources is performed elsewhere.

· The current version of the CL does not operate on Certificate Revocation Lists (CRLs); subsequent iterations will.

· The CL does not manipulate Certificate Bundles; it only operates on single certificates.

2.1
 Supported Certificate Fields

Refer to the CDSA specification, May 2000, chapters 10 and 31 for background on this section.

The CDSA spec provides a number of way to access individual certificate components (or “fields” per the CDSA spec). Access to specific fields, when either parsing or constructing a certificate, is via OID/Value pairs expressed as CSSM_FIELDs. CSSM_FIELD.FieldOid is an OID which identifies a particular certificate field. CSSM_FIELD.FieldValue contains, in one of many formats (see below), the actual certificate component.

In hopes of maintaining a straightforward API, the current design generally provides access to certificate fields as C structures – not as BER-encoded blobs, LDAP strings, etc. When decoding and parsing a certificate, these C structures are allocated by the CL on the app’s behalf; a pointer to a given C structure is returned in a CSSM_FIELD.FieldValue.Data pointer. The CL will free a CSSM_FIELD and/or all of its referents via CL_FreeFields() or CL_FreeFieldValue().

The following tables list the accessible certificate fields, the OID associated with each field, and the C structure by which the field is represented (“rep” in the table) when passed between the app and the CL.

2.1.1
Standard X.509 V3 fields

The C structures for these fields are defined in <cdsa/x509defs.h>. The OIDs are defined in <cdsa/oidscert.h>.

Version

OID:
CSSMOID_X509V1Version

Rep:
BER-encoded integer, MS byte first, length in FieldValue.Length

Note:
This field is optional; if not present, the default value of 0 (indicating version 1) should be inferred by the app.

Serial Number

OID:
CSSMOID_X509V1SerialNumber

Rep:
BER-encoded integer, MS byte first, length in FieldValue.Length

Algorithm Identifier in To-be-signed certificate

OID:
CSSMOID_X509V1SignatureAlgorithmTBS

Rep:
CSSMOID_X509_ALGORITHM_IDENTIFIER

Algorithm Identifier in certificate

OID:
CSSMOID_X509V1SignatureAlgorithm

Rep:
CSSMOID_X509_ALGORITHM_ IDENTIFIER

Note:
This field is read-only; it can not be set during a CertCreateTemplate operation.

Issuer

OID:
CSSMOID_X509V1IssuerNameCStruct

Rep:
C struct : CSSM_X509_NAME

Subject

OID:
CSSMOID_X509V1SubjectNameCStruct

Rep:
C struct : CSSM_X509_NAME

Validity not before

OID:
CSSMOID_X509V1ValidityNotBefore

Rep:
C struct : CSSM_X509_TIME

Validity not after

OID:
CSSMOID_X509V1ValidityNotAfter

Rep:
C struct : CSSM_X509_TIME

Subject Public Key Info

OID:
CSSMOID_X509V1SubjectPublicKeyCStruct

Rep:
C struct : CSSM_X509_SUBJECT_PUBLIC_KEY_INFO

Note:
When creating a template, this field is mutually exclusive with “Subject Public Key” (below). If it is necessary to specify algorithm parameters, use this version.

Issuer Unique ID

OID:
CSSMOID_X509V1CertificateIssuerUniqueId

Rep:
raw bytes (already DER-decoded, length in FieldValue.Length)

Note:
This field is optional and no default value exists.

Subject Unique ID

OID:
CSSMOID_X509V1CertificateSubjectUniqueId

Rep:
raw bytes (already DER-decoded, length in FieldValue.Length)

Note:
This field is optional and no default value exists.

Signature

OID:
CSSMOID_X509V1Signature

Rep:
raw bytes (already DER-decoded, length in FieldValue.Length)

Note:
This field is read-only; it can not be set during a CertCreateTemplate operation.

Subject Public Key

OID:
CSSMOID_CSSMKeyStruct

Rep:
CSSM_KEY struct

Note:
When creating a template, this field is mutually exclusive with “Subject Public Key Info” (above).

Issuer, Normalized and Encoded

OID:
CSSMOID_X509V1IssuerName

Rep:
DER-encoded normalized issuer name. This field is intended to be used when comparing certificates’ subject and issuer names. Per RFC 2459, 4.1.2.4, when comparing subject and issuer names, case is ignored and leading, trailing, and multiple whitespace characters are ignored.

Note:
This field is read-only; it can not be set during a CertCreateTemplate operation.

Subject, Normalized and Encoded

OID:
CSSMOID_X509V1SubjectName

Rep:
DER-encoded normalized subject name. See description of previous field for more info.

Note:
This field is read-only; it can not be set during a CertCreateTemplate operation.

2.1.2
Extensions

<Note: Please refer to RFC 2459, section 4, for information on Certificate extensions. You’ll need to thoroughly understand the RFC in order to effectively use extensions.>

The CL can decode and parse certificate extensions defined in X.509. The CDSA spec does not provide OIDs or C structs for accessing these extensions. Thus the C structures for supported extensions are defined in the Apple-specific header <Security/certextensions.h>. OIDs for supported extensions are in <Security/oidscert.h>. Other extensions may be encountered beyond what the CL can interpret; the general scheme is that extensions which are not understood by the CL are associated with the CSSMOID_X509V3CertificateExtensionCStruct OID; extensions which are understood by the CL are reported as fields with the appropriate extension-specific OID. Note that for a given certificate, multiple extensions with OID X509V3CertificateExtensionCStruct can exist.

All extensions are expressed in CSSM_FIELD.FieldValue.Data as a pointer to a CSSM_X509_EXTENSION. In the case where the CL understands (and has decoded and parsed) the extension, the CSSM_X509_EXTENSION.struct is defined as follows:

ExtnId

The OID associated with the extension

Critical

As per the encoded extension

Format

CSSM_X509_FORMAT_PARSED

Value.parsedValue
Pointer to extension-specific C struct from certextensions.h

BERValue

NULL Data

In the general case of an extension which is NOT understood by the CL, the CSSM_X509_EXTENSION.struct is defined as follows:

ExtnId

The OID associated with the extension

Critical

As per the encoded extension

Format

CSSM_X509_FORMAT_ENCODED

Value

NULL

BERValue
The BER_Encoded extension (“extnValue” in X.509 terminology)

Unparsed/undecoded extension

OID:
CSSMOID_X509V3CertificateExtensionCStruct

Rep:
CSSM_X509_EXTENSION, with NULL value.parsedValue, valid BERValue

Note:
In this case, the FieldOid value (X509V3CertificateExtensionCStruct) is not the same as the value in CSSM_X509_EXTENSION.ExtnId. The latter is the OID from the cert; the former is an OID specific to the CL. For extensions which are understood and parsed by the CL, these two fields are identical.

Authority Key ID

OID:
CSSMOID_AuthorityKeyIdentifier

Rep:
CSSM_X509_EXTENSION , with Value.parsedValue pointing to a CE_AuthorityKeyID

Subject key ID

OID:
CSSMOID_SubjectKeyIdentifier

Rep:
CSSM_X509_EXTENSION , with Value.parsedValue pointing to a CE_ SubjectKeyID

KEY Usage

OID:
CSSMOID_KeyUsage

Rep:
CSSM_X509_EXTENSION , with Value.parsedValue pointing to a CE_ KeyUsage

Subject alternate name

OID:
CSSMOID_SubjectAltName

Rep:
CSSM_X509_EXTENSION , with Value.parsedValue pointing to a CE_ GeneralNames

Extended key usage

OID:
CSSMOID_ExtendedKeyUsage

Rep:
CSSM_X509_EXTENSION , with Value.parsedValue pointing to a CE_ ExtendedKeyUsage

Basic constraints

OID:
CSSMOID_BasicConstraints

Rep:
CSSM_X509_EXTENSION , with Value.parsedValue pointing to a CE_ BasicConstraints

Cert policies

OID:
CSSMOID_CertificatePolicies

Rep:
CSSM_X509_EXTENSION , with Value.parsedValue pointing to a CE_ CertPolicies

Netscape cert type

OID:
CSSMOID_NetscapeCertType

Rep:
CSSM_X509_EXTENSION , with Value.parsedValue pointing to a CE_ NetscapeCertType

3.0
Design Specification

3.1
General

The CL is conceptually a CDSA plugin whose top-level classes, AppleX509CL and AppleX509CLSession, are subclasses of CssmPlugin and CLPluginSession respectively. In current practice the CL builds as a library which is statically linked to the Security framework for performance reasons. The source for the CL is part of the Security project, in the AppleX509CL group and directory.

All of the public CL Service Provider Interface (SPI) functions are implemented in the AppleX509CLSession class; SPI functions related to certs (as opposed to CRLs), are implemented in Session_Cert.cpp. This file is basically the glue between the CL SPI and the DecodedCert class, described in detail below. For now, think of DecodedCert as the primary means for storing raw decoded certs in memory, for DER encoding and decoding those certs, and for converting between decoded C++ cert fields (as they are stored in a DecodedCert) and CDSA-centric data structures (as they appear to clients of CDSA).

Most of the DER encoding and decoding in the CL is done using the SNACC-compiled libraries in the SecurityASN1 subproject. There are two cases where this would be extremely inconvenient; these are the packing of the fields of a certificate after it has been signed, and the verification of a cert after it has been unpacked. SNACC does not provide for “partial” encoding or decoding, which these operations require, so the DER operations are done “the hard way” in these cases (which is not very hard at all). In any case, maintenance to and upgrades of the CL will definitely require familiarity with SNACC and the X509-related classes derived from it.

An AppleX509CLSession maintains a list of cached DecodedCerts for two reasons. One is to implement the CertCache()/CertGetFirstCachedFieldValue() mechanism, which allows the retrieval of multiple cert fields with one (somewhat expensive) decode operation. The other reason is to optimize normal query operations (CertGetFirstFieldValue(), etc.). In this case, not only is the search state maintained across SPI calls, but the decoded cert associated with that search is also maintained.

3.2
Class Descriptions

3.2.1
AppleX509CL, AppleX509CLSession

AppleX509CL is your basic subclass of CssmPlugin. It sole purpose in life is to instantiate AppleX509CLSession objects at ModuleAttach time.

AppleX509CLSession implements the C++-style CL SPI defined in CLPluginSession. It also maintains session-wide state consisting of lists of cached certs, CRLs, and pending queries (see below).

3.2.2
DecodedCert

DecodedCert is derived from the SNACC-based Certificate class. The main functionality which DecodedCert adds is the parsing and encoding of extensions, which are not amenable to the brute force style of work performed by SNACC and its generated classes. All certs stored in a AppleX509CLSession – either as a result of an explicit CertCache operation, or as a side effect of a field search – are stored as DecodedCerts.

Extensions are not decoded in (SNACC) class Certificate beyond the level of the X.509 Extension object, which just contains the ID (an OID), the critical flag, and an octet string containing an ID-specific “thing”. When DecodedCert decodes an encoded cert (there is a one-shot constructor for this purpose) it also parses the cert’s Extension objects, decoding them into specific SNACC classes like KeyUsage or BasicConstriantsSyntax. DecodedCert keeps these decoded extensions in a private list. GetCertField ops which access extensions access this list of decoded extensions.

When creating a cert template (To-Be-Signed cert, or TBS), each incoming field associated with an extension is translated into an object like a (SNACC) KeyUsage and stored in DecodedCert’s decoded extensions list. When encoding a TBS, DecodedCert BER-encodes each of the SNACC objects (KeyUsage, etc.) in its list of decoded extensions, wraps the result in an Octet string (actually an AsnOcts) and stores it in the SNACC-generated CertificateToSign's extensions list. Note that when creating a cert (a cert template, in CDSA parlance), actually just the CertificateToSign portion of a Certificate is built using SNACC; the DER-encoded version of that is what is signed, and the resulting signature, algorithmID, and DER-encoded TBS are manually encoded into the final DER-encoded cert.

Support for extensions which are not understood is handled as follows. When setting cert fields for such extensions during template construction, the app has to BER-encode the underlying extension. DecodedCert just wraps this in an octet string (AsnOcts) and stores the result in a DecodedExten without further ado. When encoding the TBS, this octet string is just copied into the CertificateToSign's Extension list without further ado. When decoding a cert, if DecodedCert finds an extension it doesn’t understand, the SNACC object stored in the DecodedExten is just a copy of the AsnOcts (which is the BER encoding of the underlying mystery extension wrapped in an Octet string). We pass back the Octet string's contents (*not* the BER-encoded octet string) during a GetCertField op.

The grunt work involving conversion between SNACC-style C++ cert components and the corresponding CDSA-style C components is performed in CertFields.cpp for the standard fields and in CLCertExtensions.cpp for the supported extensions. The code in these files is pretty dreadful and contains a massivr amounts of brute-force conversion code. Each individual piece is OK but there are lot of little pieces.

3.2.3
CLCachedEntry, CLCachedCert, CLCachedCRL

These classes just provide a way to store DecodedCerts (and in the future, DecodedCRLs) in a session, providing an opaque CSSM_HANDLE and a reference to the underlying Decoded{Cert,CRL}. Code is in CLCachedEntry.{h,cpp}. These objects are stored in a locked map in AppleX509CLSession. CLCachedEntry is the base class of this set.

3.2.4
CLQuery

A CLQuery represents an active search operation, be it on a cert or a CRL (currently unimplemented by this class supports it), and both on cached and – from the app’s point of view – uncached objects. When a search is pending (e.g., between GetFirstField() and CertAbortQuery()), there is a CLQuery object associated with the search maintained in a locked map in the session. Each active CLQuery always refers to a CLCachedEntry, by handle rather than by explicit reference, in case of an AbortCache in the midst of a search on a cached object. CLQuery maintains all the state necessary to implement incremental searches, including the OID of the field being searched and the current state of the search. Code is in CLCachedEntry.{h,cpp}.

3.3.5
LockedMap

This is a thread-safe STL-style map. It’s used by AppleX509Session to store both CLCacheEntries and CLQueries. (The CL is thread safe for both searches and for cached certs, though a given search can only be processed by one thread.)

3.3.6
CSPAttacher

In certain cases, the CL needs to attach to the CSP on its own. These cases are: extracting a CSSM_KEY from a cert, in which the CSP must be used to determine the key size in bits, and in a CertVerify operation when the caller has not provided a valid sign/verify context. To accommodate these situations, CSPAttacher provides a single process-wide attachment to the standard CSP using the ModuleNexus mechanism. Note that the SecureTransport library has a similar mechanism for the CSP, CL and TP; if it is certain that both SecureTransport and the CL will always reside in the Security framework (as opposed to the CL being a loadable module), these ModuleNexus-based attachers could be coalesced.

4.0
Revision History

Revision
Date

Change

0.1
8/7/2000
Initial distribution.

0.2
8/8/2000
Elaborated on Extension mechanism.

0.3
8/23/2000
Changed Usage note for CSSMOID_X509V1Version

Modified Signature algorithm OIDs and usage notes

Fixed typo in Validity Not Before field

Changed CertExtensions.h to certextensions.h

0.4
9/14/2000
Flagged some extensions as read-only.

Noted mutual exclusivity of some extensions.

Clarified OID usage for non-understood extensions.

0.5
10/25/2000
Added normalized & encoded subject/issuer name fields.

Fixed usage notes for fields pertaining to Subject Public

Key.

0.9
8/29/2001
Added Design Specification.

Apple Certificate Library Module for OS X Rev. 0.9 Page 12 of 12

