# $OpenLDAP$ # Copyright 2005-2011 The OpenLDAP Foundation, All Rights Reserved. # COPYING RESTRICTIONS APPLY, see COPYRIGHT. H1: Configuring slapd Once the software has been built and installed, you are ready to configure {{slapd}}(8) for use at your site. OpenLDAP 2.3 and later have transitioned to using a dynamic runtime configuration engine, {{slapd-config}}(5). {{slapd-config}}(5) * is fully LDAP-enabled * is managed using the standard LDAP operations * stores its configuration data in an {{TERM:LDIF}} database, generally in the {{F:/usr/local/etc/openldap/slapd.d}} directory. * allows all of slapd's configuration options to be changed on the fly, generally without requiring a server restart for the changes to take effect. This chapter describes the general format of the {{slapd-config}}(5) configuration system, followed by a detailed description of commonly used settings. The older style {{slapd.conf}}(5) file is still supported, but its use is deprecated and support for it will be withdrawn in a future OpenLDAP release. Configuring {{slapd}}(8) via {{slapd.conf}}(5) is described in the next chapter. Refer to {{slapd}}(8) for information on how to have slapd automatically convert from {{slapd.conf}}(5) to {{slapd-config}}(5). Note: Although the {{slapd-config}}(5) system stores its configuration as (text-based) LDIF files, you should {{1:never}} edit any of the LDIF files directly. Configuration changes should be performed via LDAP operations, e.g. {{ldapadd}}(1), {{ldapdelete}}(1), or {{ldapmodify}}(1). Note: You will need to continue to use the older {{slapd.conf}}(5) configuration system if your OpenLDAP installation requires the use of one or more backends or overlays that have not been updated to use the {{slapd-config}}(5) system. As of OpenLDAP 2.4.25, the only official backends that have not yet been updated to use {{slapd-config}}(5) are {{slapd-meta}}(5) and {{slapd-sql}}(5). There may be additional contributed or experimental overlays that also have not been updated. H2: Configuration Layout The slapd configuration is stored as a special LDAP directory with a predefined schema and DIT. There are specific objectClasses used to carry global configuration options, schema definitions, backend and database definitions, and assorted other items. A sample config tree is shown in Figure 5.1. !import "config_dit.png"; align="center"; title="Sample configuration tree" FT[align="Center"] Figure 5.1: Sample configuration tree. Other objects may be part of the configuration but were omitted from the illustration for clarity. The {{slapd-config}} configuration tree has a very specific structure. The root of the tree is named {{EX:cn=config}} and contains global configuration settings. Additional settings are contained in separate child entries: * Dynamically loaded modules .. These may only be used if the {{EX:--enable-modules}} option was used to configure the software. * Schema definitions .. The {{EX:cn=schema,cn=config}} entry contains the system schema (all the schema that is hard-coded in slapd). .. Child entries of {{EX:cn=schema,cn=config}} contain user schema as loaded from config files or added at runtime. * Backend-specific configuration * Database-specific configuration .. Overlays are defined in children of the Database entry. .. Databases and Overlays may also have other miscellaneous children. The usual rules for LDIF files apply to the configuration information: Comment lines beginning with a '{{EX:#}}' character are ignored. If a line begins with a single space, it is considered a continuation of the previous line (even if the previous line is a comment) and the single leading space is removed. Entries are separated by blank lines. The general layout of the config LDIF is as follows: > # global configuration settings > dn: cn=config > objectClass: olcGlobal > cn: config > > > # schema definitions > dn: cn=schema,cn=config > objectClass: olcSchemaConfig > cn: schema > > > dn: cn={X}core,cn=schema,cn=config > objectClass: olcSchemaConfig > cn: {X}core > > > # additional user-specified schema > ... > > # backend definitions > dn: olcBackend=,cn=config > objectClass: olcBackendConfig > olcBackend: > > > # database definitions > dn: olcDatabase={X},cn=config > objectClass: olcDatabaseConfig > olcDatabase: {X} > > > # subsequent definitions and settings > ... Some of the entries listed above have a numeric index {{EX:"{X}"}} in their names. While most configuration settings have an inherent ordering dependency (i.e., one setting must take effect before a subsequent one may be set), LDAP databases are inherently unordered. The numeric index is used to enforce a consistent ordering in the configuration database, so that all ordering dependencies are preserved. In most cases the index does not have to be provided; it will be automatically generated based on the order in which entries are created. Configuration directives are specified as values of individual attributes. Most of the attributes and objectClasses used in the slapd configuration have a prefix of {{EX:"olc"}} (OpenLDAP Configuration) in their names. Generally there is a one-to-one correspondence between the attributes and the old-style {{EX:slapd.conf}} configuration keywords, using the keyword as the attribute name, with the "olc" prefix attached. A configuration directive may take arguments. If so, the arguments are separated by whitespace. If an argument contains whitespace, the argument should be enclosed in double quotes {{EX:"like this"}}. In the descriptions that follow, arguments that should be replaced by actual text are shown in brackets {{EX:<>}}. The distribution contains an example configuration file that will be installed in the {{F: /usr/local/etc/openldap}} directory. A number of files containing schema definitions (attribute types and object classes) are also provided in the {{F: /usr/local/etc/openldap/schema}} directory. H2: Configuration Directives This section details commonly used configuration directives. For a complete list, see the {{slapd-config}}(5) manual page. This section will treat the configuration directives in a top-down order, starting with the global directives in the {{EX:cn=config}} entry. Each directive will be described along with its default value (if any) and an example of its use. H3: cn=config Directives contained in this entry generally apply to the server as a whole. Most of them are system or connection oriented, not database related. This entry must have the {{EX:olcGlobal}} objectClass. H4: olcIdleTimeout: Specify the number of seconds to wait before forcibly closing an idle client connection. A value of 0, the default, disables this feature. H4: olcLogLevel: This directive specifies the level at which debugging statements and operation statistics should be syslogged (currently logged to the {{syslogd}}(8) {{EX:LOG_LOCAL4}} facility). You must have configured OpenLDAP {{EX:--enable-debug}} (the default) for this to work (except for the two statistics levels, which are always enabled). Log levels may be specified as integers or by keyword. Multiple log levels may be used and the levels are additive. To display what levels correspond to what kind of debugging, invoke slapd with {{EX:-d?}} or consult the table below. The possible values for are: !block table; colaligns="RL"; align=Center; \ title="Table 5.1: Debugging Levels" Level Keyword Description -1 any enable all debugging 0 no debugging 1 (0x1 trace) trace function callss 2 (0x2 packets) debug packet handling 4 (0x4 args) heavy trace debugging 8 (0x8 conns) connection management 16 (0x10 BER) print out packets sent and received 32 (0x20 filter) search filter processing 64 (0x40 config) configuration processing 128 (0x80 ACL) access control list processing 256 (0x100 stats) stats log connections/operations/results 512 (0x200 stats2) stats log entries sent 1024 (0x400 shell) print communication with shell backends 2048 (0x800 parse) print entry parsing debugging 16384 (0x4000 sync) syncrepl consumer processing 32768 (0x8000 none) only messages that get logged whatever log level is set !endblock The desired log level can be input as a single integer that combines the (ORed) desired levels, both in decimal or in hexadecimal notation, as a list of integers (that are ORed internally), or as a list of the names that are shown between brackets, such that > olcLogLevel 129 > olcLogLevel 0x81 > olcLogLevel 128 1 > olcLogLevel 0x80 0x1 > olcLogLevel acl trace are equivalent. \Examples: E: olcLogLevel -1 This will cause lots and lots of debugging information to be logged. E: olcLogLevel conns filter Just log the connection and search filter processing. E: olcLogLevel none Log those messages that are logged regardless of the configured loglevel. This differs from setting the log level to 0, when no logging occurs. At least the {{EX:None}} level is required to have high priority messages logged. \Default: E: olcLogLevel stats Basic stats logging is configured by default. However, if no olcLogLevel is defined, no logging occurs (equivalent to a 0 level). H4: olcReferral This directive specifies the referral to pass back when slapd cannot find a local database to handle a request. \Example: > olcReferral: ldap://root.openldap.org This will refer non-local queries to the global root LDAP server at the OpenLDAP Project. Smart LDAP clients can re-ask their query at that server, but note that most of these clients are only going to know how to handle simple LDAP URLs that contain a host part and optionally a distinguished name part. H4: Sample Entry >dn: cn=config >objectClass: olcGlobal >cn: config >olcIdleTimeout: 30 >olcLogLevel: Stats >olcReferral: ldap://root.openldap.org H3: cn=module If support for dynamically loaded modules was enabled when configuring slapd, {{EX:cn=module}} entries may be used to specify sets of modules to load. Module entries must have the {{EX:olcModuleList}} objectClass. H4: olcModuleLoad: Specify the name of a dynamically loadable module to load. The filename may be an absolute path name or a simple filename. Non-absolute names are searched for in the directories specified by the {{EX:olcModulePath}} directive. H4: olcModulePath: Specify a list of directories to search for loadable modules. Typically the path is colon-separated but this depends on the operating system. H4: Sample Entries >dn: cn=module{0},cn=config >objectClass: olcModuleList >cn: module{0} >olcModuleLoad: /usr/local/lib/smbk5pwd.la > >dn: cn=module{1},cn=config >objectClass: olcModuleList >cn: module{1} >olcModulePath: /usr/local/lib:/usr/local/lib/slapd >olcModuleLoad: accesslog.la >olcModuleLoad: pcache.la H3: cn=schema The cn=schema entry holds all of the schema definitions that are hard-coded in slapd. As such, the values in this entry are generated by slapd so no schema values need to be provided in the config file. The entry must still be defined though, to serve as a base for the user-defined schema to add in underneath. Schema entries must have the {{EX:olcSchemaConfig}} objectClass. H4: olcAttributeTypes: <{{REF:RFC4512}} Attribute Type Description> This directive defines an attribute type. Please see the {{SECT:Schema Specification}} chapter for information regarding how to use this directive. H4: olcObjectClasses: <{{REF:RFC4512}} Object Class Description> This directive defines an object class. Please see the {{SECT:Schema Specification}} chapter for information regarding how to use this directive. H4: Sample Entries >dn: cn=schema,cn=config >objectClass: olcSchemaConfig >cn: schema > >dn: cn=test,cn=schema,cn=config >objectClass: olcSchemaConfig >cn: test >olcAttributeTypes: ( 1.1.1 > NAME 'testAttr' > EQUALITY integerMatch > SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 ) >olcAttributeTypes: ( 1.1.2 NAME 'testTwo' EQUALITY caseIgnoreMatch > SUBSTR caseIgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.44 ) >olcObjectClasses: ( 1.1.3 NAME 'testObject' > MAY ( testAttr $ testTwo ) AUXILIARY ) H3: Backend-specific Directives Backend directives apply to all database instances of the same type and, depending on the directive, may be overridden by database directives. Backend entries must have the {{EX:olcBackendConfig}} objectClass. H4: olcBackend: This directive names a backend-specific configuration entry. {{EX:}} should be one of the supported backend types listed in Table 5.2. !block table; align=Center; coltags="EX,N"; \ title="Table 5.2: Database Backends" Types Description bdb Berkeley DB transactional backend config Slapd configuration backend dnssrv DNS SRV backend hdb Hierarchical variant of bdb backend ldap Lightweight Directory Access Protocol (Proxy) backend ldif Lightweight Data Interchange Format backend meta Meta Directory backend monitor Monitor backend passwd Provides read-only access to {{passwd}}(5) perl Perl Programmable backend shell Shell (extern program) backend sql SQL Programmable backend !endblock \Example: > olcBackend: bdb There are no other directives defined for this entry. Specific backend types may define additional attributes for their particular use but so far none have ever been defined. As such, these directives usually do not appear in any actual configurations. H4: Sample Entry > dn: olcBackend=bdb,cn=config > objectClass: olcBackendConfig > olcBackend: bdb H3: Database-specific Directives Directives in this section are supported by every type of database. Database entries must have the {{EX:olcDatabaseConfig}} objectClass. H4: olcDatabase: [{}] This directive names a specific database instance. The numeric {} may be provided to distinguish multiple databases of the same type. Usually the index can be omitted, and slapd will generate it automatically. {{EX:}} should be one of the supported backend types listed in Table 5.2 or the {{EX:frontend}} type. The {{EX:frontend}} is a special database that is used to hold database-level options that should be applied to all the other databases. Subsequent database definitions may also override some frontend settings. The {{EX:config}} database is also special; both the {{EX:config}} and the {{EX:frontend}} databases are always created implicitly even if they are not explicitly configured, and they are created before any other databases. \Example: > olcDatabase: bdb This marks the beginning of a new {{TERM:BDB}} database instance. H4: olcAccess: to [ by [] [] ]+ This directive grants access (specified by ) to a set of entries and/or attributes (specified by ) by one or more requestors (specified by ). See the {{SECT:Access Control}} section of this guide for basic usage. !if 0 More detailed discussion of this directive can be found in the {{SECT:Advanced Access Control}} chapter. !endif Note: If no {{EX:olcAccess}} directives are specified, the default access control policy, {{EX:to * by * read}}, allows all users (both authenticated and anonymous) read access. Note: Access controls defined in the frontend are appended to all other databases' controls. H4: olcReadonly { TRUE | FALSE } This directive puts the database into "read-only" mode. Any attempts to modify the database will return an "unwilling to perform" error. \Default: > olcReadonly: FALSE H4: olcRootDN: This directive specifies the DN that is not subject to access control or administrative limit restrictions for operations on this database. The DN need not refer to an entry in this database or even in the directory. The DN may refer to a SASL identity. Entry-based Example: > olcRootDN: "cn=Manager,dc=example,dc=com" SASL-based Example: > olcRootDN: "uid=root,cn=example.com,cn=digest-md5,cn=auth" See the {{SECT:SASL Authentication}} section for information on SASL authentication identities. H4: olcRootPW: This directive can be used to specify a password for the DN for the rootdn (when the rootdn is set to a DN within the database). \Example: > olcRootPW: secret It is also permissible to provide a hash of the password in {{REF:RFC2307}} form. {{slappasswd}}(8) may be used to generate the password hash. \Example: > olcRootPW: {SSHA}ZKKuqbEKJfKSXhUbHG3fG8MDn9j1v4QN The hash was generated using the command {{EX:slappasswd -s secret}}. H4: olcSizeLimit: This directive specifies the maximum number of entries to return from a search operation. \Default: > olcSizeLimit: 500 See the {{SECT:Limits}} section of this guide and slapd-config(5) for more details. H4: olcSuffix: This directive specifies the DN suffix of queries that will be passed to this backend database. Multiple suffix lines can be given, and usually at least one is required for each database definition. (Some backend types, such as {{EX:frontend}} and {{EX:monitor}} use a hard-coded suffix which may not be overridden in the configuration.) \Example: > olcSuffix: "dc=example,dc=com" Queries with a DN ending in "dc=example,dc=com" will be passed to this backend. Note: When the backend to pass a query to is selected, slapd looks at the suffix value(s) in each database definition in the order in which they were configured. Thus, if one database suffix is a prefix of another, it must appear after it in the configuration. H4: olcSyncrepl > olcSyncrepl: rid= > provider=ldap[s]://[:port] > [type=refreshOnly|refreshAndPersist] > [interval=dd:hh:mm:ss] > [retry=[ <# of retries>]+] > searchbase= > [filter=] > [scope=sub|one|base] > [attrs=] > [attrsonly] > [sizelimit=] > [timelimit=] > [schemachecking=on|off] > [bindmethod=simple|sasl] > [binddn=] > [saslmech=] > [authcid=] > [authzid=] > [credentials=] > [realm=] > [secprops=] > [starttls=yes|critical] > [tls_cert=] > [tls_key=] > [tls_cacert=] > [tls_cacertdir=] > [tls_reqcert=never|allow|try|demand] > [tls_ciphersuite=] > [tls_crlcheck=none|peer|all] > [logbase=] > [logfilter=] > [syncdata=default|accesslog|changelog] This directive specifies the current database as a replica of the master content by establishing the current {{slapd}}(8) as a replication consumer site running a syncrepl replication engine. The master database is located at the replication provider site specified by the {{EX:provider}} parameter. The replica database is kept up-to-date with the master content using the LDAP Content Synchronization protocol. See {{REF:RFC4533}} for more information on the protocol. The {{EX:rid}} parameter is used for identification of the current {{EX:syncrepl}} directive within the replication consumer server, where {{EX:}} uniquely identifies the syncrepl specification described by the current {{EX:syncrepl}} directive. {{EX:}} is non-negative and is no more than three decimal digits in length. The {{EX:provider}} parameter specifies the replication provider site containing the master content as an LDAP URI. The {{EX:provider}} parameter specifies a scheme, a host and optionally a port where the provider slapd instance can be found. Either a domain name or IP address may be used for . Examples are {{EX:ldap://provider.example.com:389}} or {{EX:ldaps://192.168.1.1:636}}. If is not given, the standard LDAP port number (389 or 636) is used. Note that the syncrepl uses a consumer-initiated protocol, and hence its specification is located at the consumer site, whereas the {{EX:replica}} specification is located at the provider site. {{EX:syncrepl}} and {{EX:replica}} directives define two independent replication mechanisms. They do not represent the replication peers of each other. The content of the syncrepl replica is defined using a search specification as its result set. The consumer slapd will send search requests to the provider slapd according to the search specification. The search specification includes {{EX:searchbase}}, {{EX:scope}}, {{EX:filter}}, {{EX:attrs}}, {{EX:attrsonly}}, {{EX:sizelimit}}, and {{EX:timelimit}} parameters as in the normal search specification. The {{EX:searchbase}} parameter has no default value and must always be specified. The {{EX:scope}} defaults to {{EX:sub}}, the {{EX:filter}} defaults to {{EX:(objectclass=*)}}, {{EX:attrs}} defaults to {{EX:"*,+"}} to replicate all user and operational attributes, and {{EX:attrsonly}} is unset by default. Both {{EX:sizelimit}} and {{EX:timelimit}} default to "unlimited", and only positive integers or "unlimited" may be specified. The {{TERM[expand]LDAP Sync}} protocol has two operation types: {{EX:refreshOnly}} and {{EX:refreshAndPersist}}. The operation type is specified by the {{EX:type}} parameter. In the {{EX:refreshOnly}} operation, the next synchronization search operation is periodically rescheduled at an interval time after each synchronization operation finishes. The interval is specified by the {{EX:interval}} parameter. It is set to one day by default. In the {{EX:refreshAndPersist}} operation, a synchronization search remains persistent in the provider {{slapd}} instance. Further updates to the master replica will generate {{EX:searchResultEntry}} to the consumer slapd as the search responses to the persistent synchronization search. If an error occurs during replication, the consumer will attempt to reconnect according to the retry parameter which is a list of the and <# of retries> pairs. For example, retry="60 10 300 3" lets the consumer retry every 60 seconds for the first 10 times and then retry every 300 seconds for the next three times before stop retrying. + in <# of retries> means indefinite number of retries until success. The schema checking can be enforced at the LDAP Sync consumer site by turning on the {{EX:schemachecking}} parameter. If it is turned on, every replicated entry will be checked for its schema as the entry is stored into the replica content. Every entry in the replica should contain those attributes required by the schema definition. If it is turned off, entries will be stored without checking schema conformance. The default is off. The {{EX:binddn}} parameter gives the DN to bind as for the syncrepl searches to the provider slapd. It should be a DN which has read access to the replication content in the master database. The {{EX:bindmethod}} is {{EX:simple}} or {{EX:sasl}}, depending on whether simple password-based authentication or {{TERM:SASL}} authentication is to be used when connecting to the provider {{slapd}} instance. Simple authentication should not be used unless adequate data integrity and confidentiality protections are in place (e.g. TLS or IPsec). Simple authentication requires specification of {{EX:binddn}} and {{EX:credentials}} parameters. SASL authentication is generally recommended. SASL authentication requires specification of a mechanism using the {{EX:saslmech}} parameter. Depending on the mechanism, an authentication identity and/or credentials can be specified using {{EX:authcid}} and {{EX:credentials}}, respectively. The {{EX:authzid}} parameter may be used to specify an authorization identity. The {{EX:realm}} parameter specifies a realm which a certain mechanisms authenticate the identity within. The {{EX:secprops}} parameter specifies Cyrus SASL security properties. The {{EX:starttls}} parameter specifies use of the StartTLS extended operation to establish a TLS session before authenticating to the provider. If the {{EX:critical}} argument is supplied, the session will be aborted if the StartTLS request fails. Otherwise the syncrepl session continues without TLS. Note that the main slapd TLS settings are not used by the syncrepl engine; by default the TLS parameters from a {{ldap.conf}}(5) configuration file will be used. TLS settings may be specified here, in which case any {{ldap.conf}}(5) settings will be completely ignored. Rather than replicating whole entries, the consumer can query logs of data modifications. This mode of operation is referred to as {{delta syncrepl}}. In addition to the above parameters, the {{EX:logbase}} and {{EX:logfilter}} parameters must be set appropriately for the log that will be used. The {{EX:syncdata}} parameter must be set to either {{EX:"accesslog"}} if the log conforms to the {{slapo-accesslog}}(5) log format, or {{EX:"changelog"}} if the log conforms to the obsolete {{changelog}} format. If the {{EX:syncdata}} parameter is omitted or set to {{EX:"default"}} then the log parameters are ignored. The {{syncrepl}} replication mechanism is supported by the {{bdb}} and {{hdb}} backends. See the {{SECT:LDAP Sync Replication}} chapter of this guide for more information on how to use this directive. H4: olcTimeLimit: This directive specifies the maximum number of seconds (in real time) slapd will spend answering a search request. If a request is not finished in this time, a result indicating an exceeded timelimit will be returned. \Default: > olcTimeLimit: 3600 See the {{SECT:Limits}} section of this guide and slapd-config(5) for more details. H4: olcUpdateref: This directive is only applicable in a slave slapd. It specifies the URL to return to clients which submit update requests upon the replica. If specified multiple times, each {{TERM:URL}} is provided. \Example: > olcUpdateref: ldap://master.example.net H4: Sample Entries >dn: olcDatabase=frontend,cn=config >objectClass: olcDatabaseConfig >objectClass: olcFrontendConfig >olcDatabase: frontend >olcReadOnly: FALSE > >dn: olcDatabase=config,cn=config >objectClass: olcDatabaseConfig >olcDatabase: config >olcRootDN: cn=Manager,dc=example,dc=com H3: BDB and HDB Database Directives Directives in this category apply to both the {{TERM:BDB}} and the {{TERM:HDB}} database. They are used in an olcDatabase entry in addition to the generic database directives defined above. For a complete reference of BDB/HDB configuration directives, see {{slapd-bdb}}(5). In addition to the {{EX:olcDatabaseConfig}} objectClass, BDB and HDB database entries must have the {{EX:olcBdbConfig}} and {{EX:olcHdbConfig}} objectClass, respectively. H4: olcDbDirectory: This directive specifies the directory where the BDB files containing the database and associated indices live. \Default: > olcDbDirectory: /usr/local/var/openldap-data H4: olcDbCachesize: This directive specifies the size in entries of the in-memory cache maintained by the BDB backend database instance. \Default: > olcDbCachesize: 1000 H4: olcDbCheckpoint: This directive specifies how often to checkpoint the BDB transaction log. A checkpoint operation flushes the database buffers to disk and writes a checkpoint record in the log. The checkpoint will occur if either data has been written or minutes have passed since the last checkpoint. Both arguments default to zero, in which case they are ignored. When the argument is non-zero, an internal task will run every minutes to perform the checkpoint. See the Berkeley DB reference guide for more details. \Example: > olcDbCheckpoint: 1024 10 H4: olcDbConfig: This attribute specifies a configuration directive to be placed in the {{EX:DB_CONFIG}} file of the database directory. At server startup time, if no such file exists yet, the {{EX:DB_CONFIG}} file will be created and the settings in this attribute will be written to it. If the file exists, its contents will be read and displayed in this attribute. The attribute is multi-valued, to accommodate multiple configuration directives. No default is provided, but it is essential to use proper settings here to get the best server performance. Any changes made to this attribute will be written to the {{EX:DB_CONFIG}} file and will cause the database environment to be reset so the changes can take immediate effect. If the environment cache is large and has not been recently checkpointed, this reset operation may take a long time. It may be advisable to manually perform a single checkpoint using the Berkeley DB {{db_checkpoint}} utility before using LDAP Modify to change this attribute. \Example: > olcDbConfig: set_cachesize 0 10485760 0 > olcDbConfig: set_lg_bsize 2097512 > olcDbConfig: set_lg_dir /var/tmp/bdb-log > olcDbConfig: set_flags DB_LOG_AUTOREMOVE In this example, the BDB cache is set to 10MB, the BDB transaction log buffer size is set to 2MB, and the transaction log files are to be stored in the /var/tmp/bdb-log directory. Also a flag is set to tell BDB to delete transaction log files as soon as their contents have been checkpointed and they are no longer needed. Without this setting the transaction log files will continue to accumulate until some other cleanup procedure removes them. See the Berkeley DB documentation for the {{EX:db_archive}} command for details. For a complete list of Berkeley DB flags please see - {{URL:http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/env_set_flags.html}} Ideally the BDB cache must be at least as large as the working set of the database, the log buffer size should be large enough to accommodate most transactions without overflowing, and the log directory must be on a separate physical disk from the main database files. And both the database directory and the log directory should be separate from disks used for regular system activities such as the root, boot, or swap filesystems. See the FAQ-o-Matic and the Berkeley DB documentation for more details. H4: olcDbNosync: { TRUE | FALSE } This option causes on-disk database contents to not be immediately synchronized with in memory changes upon change. Setting this option to {{EX:TRUE}} may improve performance at the expense of data integrity. This directive has the same effect as using > olcDbConfig: set_flags DB_TXN_NOSYNC H4: olcDbIDLcacheSize: Specify the size of the in-memory index cache, in index slots. The default is zero. A larger value will speed up frequent searches of indexed entries. The optimal size will depend on the data and search characteristics of the database, but using a number three times the entry cache size is a good starting point. \Example: > olcDbIDLcacheSize: 3000 H4: olcDbIndex: { | default} [pres,eq,approx,sub,none] This directive specifies the indices to maintain for the given attribute. If only an {{EX:}} is given, the default indices are maintained. The index keywords correspond to the common types of matches that may be used in an LDAP search filter. \Example: > olcDbIndex: default pres,eq > olcDbIndex: uid > olcDbIndex: cn,sn pres,eq,sub > olcDbIndex: objectClass eq The first line sets the default set of indices to maintain to present and equality. The second line causes the default (pres,eq) set of indices to be maintained for the {{EX:uid}} attribute type. The third line causes present, equality, and substring indices to be maintained for {{EX:cn}} and {{EX:sn}} attribute types. The fourth line causes an equality index for the {{EX:objectClass}} attribute type. There is no index keyword for inequality matches. Generally these matches do not use an index. However, some attributes do support indexing for inequality matches, based on the equality index. A substring index can be more explicitly specified as {{EX:subinitial}}, {{EX:subany}}, or {{EX:subfinal}}, corresponding to the three possible components of a substring match filter. A subinitial index only indexes substrings that appear at the beginning of an attribute value. A subfinal index only indexes substrings that appear at the end of an attribute value, while subany indexes substrings that occur anywhere in a value. Note that by default, setting an index for an attribute also affects every subtype of that attribute. E.g., setting an equality index on the {{EX:name}} attribute causes {{EX:cn}}, {{EX:sn}}, and every other attribute that inherits from {{EX:name}} to be indexed. By default, no indices are maintained. It is generally advised that minimally an equality index upon objectClass be maintained. > olcDbindex: objectClass eq Additional indices should be configured corresponding to the most common searches that are used on the database. Presence indexing should not be configured for an attribute unless the attribute occurs very rarely in the database, and presence searches on the attribute occur very frequently during normal use of the directory. Most applications don't use presence searches, so usually presence indexing is not very useful. If this setting is changed while slapd is running, an internal task will be run to generate the changed index data. All server operations can continue as normal while the indexer does its work. If slapd is stopped before the index task completes, indexing will have to be manually completed using the slapindex tool. H4: olcDbLinearIndex: { TRUE | FALSE } If this setting is {{EX:TRUE}} slapindex will index one attribute at a time. The default settings is {{EX:FALSE}} in which case all indexed attributes of an entry are processed at the same time. When enabled, each indexed attribute is processed individually, using multiple passes through the entire database. This option improves slapindex performance when the database size exceeds the BDB cache size. When the BDB cache is large enough, this option is not needed and will decrease performance. Also by default, slapadd performs full indexing and so a separate slapindex run is not needed. With this option, slapadd does no indexing and slapindex must be used. H4: olcDbMode: { | } This directive specifies the file protection mode that newly created database index files should have. This can be in the form {{EX:0600}} or {{EX:-rw-------}} \Default: > olcDbMode: 0600 H4: olcDbSearchStack: Specify the depth of the stack used for search filter evaluation. Search filters are evaluated on a stack to accommodate nested {{EX:AND}} / {{EX:OR}} clauses. An individual stack is allocated for each server thread. The depth of the stack determines how complex a filter can be evaluated without requiring any additional memory allocation. Filters that are nested deeper than the search stack depth will cause a separate stack to be allocated for that particular search operation. These separate allocations can have a major negative impact on server performance, but specifying too much stack will also consume a great deal of memory. Each search uses 512K bytes per level on a 32-bit machine, or 1024K bytes per level on a 64-bit machine. The default stack depth is 16, thus 8MB or 16MB per thread is used on 32 and 64 bit machines, respectively. Also the 512KB size of a single stack slot is set by a compile-time constant which may be changed if needed; the code must be recompiled for the change to take effect. \Default: > olcDbSearchStack: 16 H4: olcDbShmKey: Specify a key for a shared memory BDB environment. By default the BDB environment uses memory mapped files. If a non-zero value is specified, it will be used as the key to identify a shared memory region that will house the environment. \Example: > olcDbShmKey: 42 H4: Sample Entry >dn: olcDatabase=hdb,cn=config >objectClass: olcDatabaseConfig >objectClass: olcHdbConfig >olcDatabase: hdb >olcSuffix: "dc=example,dc=com" >olcDbDirectory: /usr/local/var/openldap-data >olcDbCacheSize: 1000 >olcDbCheckpoint: 1024 10 >olcDbConfig: set_cachesize 0 10485760 0 >olcDbConfig: set_lg_bsize 2097152 >olcDbConfig: set_lg_dir /var/tmp/bdb-log >olcDbConfig: set_flags DB_LOG_AUTOREMOVE >olcDbIDLcacheSize: 3000 >olcDbIndex: objectClass eq H2: Configuration Example The following is an example configuration, interspersed with explanatory text. It defines two databases to handle different parts of the {{TERM:X.500}} tree; both are {{TERM:BDB}} database instances. The line numbers shown are provided for reference only and are not included in the actual file. First, the global configuration section: E: 1. # example config file - global configuration entry E: 2. dn: cn=config E: 3. objectClass: olcGlobal E: 4. cn: config E: 5. olcReferral: ldap://root.openldap.org E: 6. Line 1 is a comment. Lines 2-4 identify this as the global configuration entry. The {{EX:olcReferral:}} directive on line 5 means that queries not local to one of the databases defined below will be referred to the LDAP server running on the standard port (389) at the host {{EX:root.openldap.org}}. Line 6 is a blank line, indicating the end of this entry. E: 7. # internal schema E: 8. dn: cn=schema,cn=config E: 9. objectClass: olcSchemaConfig E: 10. cn: schema E: 11. Line 7 is a comment. Lines 8-10 identify this as the root of the schema subtree. The actual schema definitions in this entry are hardcoded into slapd so no additional attributes are specified here. Line 11 is a blank line, indicating the end of this entry. E: 12. # include the core schema E: 13. include: file:///usr/local/etc/openldap/schema/core.ldif E: 14. Line 12 is a comment. Line 13 is an LDIF include directive which accesses the {{core}} schema definitions in LDIF format. Line 14 is a blank line. Next comes the database definitions. The first database is the special {{EX:frontend}} database whose settings are applied globally to all the other databases. E: 15. # global database parameters E: 16. dn: olcDatabase=frontend,cn=config E: 17. objectClass: olcDatabaseConfig E: 18. olcDatabase: frontend E: 19. olcAccess: to * by * read E: 20. Line 15 is a comment. Lines 16-18 identify this entry as the global database entry. Line 19 is a global access control. It applies to all entries (after any applicable database-specific access controls). Line 20 is a blank line. The next entry defines the config backend. E: 21. # set a rootpw for the config database so we can bind. E: 22. # deny access to everyone else. E: 23. dn: olcDatabase=config,cn=config E: 24. objectClass: olcDatabaseConfig E: 25. olcDatabase: config E: 26. olcRootPW: {SSHA}XKYnrjvGT3wZFQrDD5040US592LxsdLy E: 27. olcAccess: to * by * none E: 28. Lines 21-22 are comments. Lines 23-25 identify this entry as the config database entry. Line 26 defines the {{super-user}} password for this database. (The DN defaults to {{"cn=config"}}.) Line 27 denies all access to this database, so only the super-user will be able to access it. (This is already the default access on the config database. It is just listed here for illustration, and to reiterate that unless a means to authenticate as the super-user is explicitly configured, the config database will be inaccessible.) Line 28 is a blank line. The next entry defines a BDB backend that will handle queries for things in the "dc=example,dc=com" portion of the tree. Indices are to be maintained for several attributes, and the {{EX:userPassword}} attribute is to be protected from unauthorized access. E: 29. # BDB definition for example.com E: 30. dn: olcDatabase=bdb,cn=config E: 31. objectClass: olcDatabaseConfig E: 32. objectClass: olcBdbConfig E: 33. olcDatabase: bdb E: 34. olcSuffix: "dc=example,dc=com" E: 35. olcDbDirectory: /usr/local/var/openldap-data E: 36. olcRootDN: "cn=Manager,dc=example,dc=com" E: 37. olcRootPW: secret E: 38. olcDbIndex: uid pres,eq E: 39. olcDbIndex: cn,sn,uid pres,eq,approx,sub E: 40. olcDbIndex: objectClass eq E: 41. olcAccess: to attrs=userPassword E: 42. by self write E: 43. by anonymous auth E: 44. by dn.base="cn=Admin,dc=example,dc=com" write E: 45. by * none E: 46. olcAccess: to * E: 47. by self write E: 48. by dn.base="cn=Admin,dc=example,dc=com" write E: 49. by * read E: 50. Line 29 is a comment. Lines 30-33 identify this entry as a BDB database configuration entry. Line 34 specifies the DN suffix for queries to pass to this database. Line 35 specifies the directory in which the database files will live. Lines 36 and 37 identify the database {{super-user}} entry and associated password. This entry is not subject to access control or size or time limit restrictions. Lines 38 through 40 indicate the indices to maintain for various attributes. Lines 41 through 49 specify access control for entries in this database. For all applicable entries, the {{EX:userPassword}} attribute is writable by the entry itself and by the "admin" entry. It may be used for authentication/authorization purposes, but is otherwise not readable. All other attributes are writable by the entry and the "admin" entry, but may be read by all users (authenticated or not). Line 50 is a blank line, indicating the end of this entry. The next entry defines another BDB database. This one handles queries involving the {{EX:dc=example,dc=net}} subtree but is managed by the same entity as the first database. Note that without line 60, the read access would be allowed due to the global access rule at line 19. E: 51. # BDB definition for example.net E: 52. dn: olcDatabase=bdb,cn=config E: 53. objectClass: olcDatabaseConfig E: 54. objectClass: olcBdbConfig E: 55. olcDatabase: bdb E: 56. olcSuffix: "dc=example,dc=net" E: 57. olcDbDirectory: /usr/local/var/openldap-data-net E: 58. olcRootDN: "cn=Manager,dc=example,dc=com" E: 59. olcDbIndex: objectClass eq E: 60. olcAccess: to * by users read H2: Converting old style {{slapd.conf}}(5) file to {{cn=config}} format Before converting to the {{cn=config}} format you should make sure that the config backend is properly configured in your existing config file. While the config backend is always present inside slapd, by default it is only accessible by its rootDN, and there are no default credentials assigned so unless you explicitly configure a means to authenticate to it, it will be unusable. If you do not already have a {{EX:database config}} section, add something like this to the end of {{EX:slapd.conf}} > database config > rootpw VerySecret Note: Since the config backend can be used to load arbitrary code into the slapd process, it is extremely important to carefully guard whatever credentials are used to access it. Since simple passwords are vulnerable to password guessing attacks, it is usually better to omit the rootpw and only use SASL authentication for the config rootDN. An existing {{slapd.conf}}(5) file can be converted to the new format using {{slaptest}}(8) or any of the slap tools: > slaptest -f /usr/local/etc/openldap/slapd.conf -F /usr/local/etc/openldap/slapd.d Test that you can access entries under {{EX:cn=config}} using the default {{rootdn}} and the {{rootpw}} configured above: > ldapsearch -x -D cn=config -w VerySecret -b cn=config You can then discard the old {{slapd.conf}}(5) file. Make sure to launch {{slapd}}(8) with the {{-F}} option to specify the configuration directory if you are not using the default directory path. Note: When converting from the slapd.conf format to slapd.d format, any included files will also be integrated into the resulting configuration database.