/*- * Copyright (c) 2004 David Schultz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.2 2004/01/21 04:51:50 grehan Exp $"); #include #include #include #include #include #include "fpmath.h" #include "gdtoaimp.h" /* Strings values used by dtoa() */ #define INFSTR "Infinity" #define NANSTR "NaN" #define DBL_BIAS (DBL_MAX_EXP - 1) #define LDBL_BIAS (LDBL_MAX_EXP - 1) #ifdef LDBL_IMPLICIT_NBIT #define LDBL_NBIT_ADJ 0 #else #define LDBL_NBIT_ADJ 1 #endif /* * Efficiently compute the log2 of an integer. Uses a combination of * arcane tricks found in fortune and arcane tricks not (yet) in * fortune. This routine behaves similarly to fls(9). */ static int log2_32(uint32_t n) { n |= (n >> 1); n |= (n >> 2); n |= (n >> 4); n |= (n >> 8); n |= (n >> 16); n = (n & 0x55555555) + ((n & 0xaaaaaaaa) >> 1); n = (n & 0x33333333) + ((n & 0xcccccccc) >> 2); n = (n & 0x0f0f0f0f) + ((n & 0xf0f0f0f0) >> 4); n = (n & 0x00ff00ff) + ((n & 0xff00ff00) >> 8); n = (n & 0x0000ffff) + ((n & 0xffff0000) >> 16); return (n - 1); } #if (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32) static int log2_64(uint64_t n) { if (n >> 32 != 0) return (log2_32((uint32_t)(n >> 32)) + 32); else return (log2_32((uint32_t)n)); } #endif /* (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32) */ /* * Round up the given digit string. If the digit string is fff...f, * this procedure sets it to 100...0 and returns 1 to indicate that * the exponent needs to be bumped. Otherwise, 0 is returned. */ static int roundup(char *s0, int ndigits) { char *s; for (s = s0 + ndigits - 1; *s == 0xf; s--) { if (s == s0) { *s = 1; return (1); } ++*s; } ++*s; return (0); } /* * Round the given digit string to ndigits digits according to the * current rounding mode. Note that this could produce a string whose * value is not representable in the corresponding floating-point * type. The exponent pointed to by decpt is adjusted if necessary. */ static void dorounding(char *s0, int ndigits, int sign, int *decpt) { int adjust = 0; /* do we need to adjust the exponent? */ switch (FLT_ROUNDS) { case 0: /* toward zero */ default: /* implementation-defined */ break; case 1: /* to nearest, halfway rounds to even */ if ((s0[ndigits] > 8) || (s0[ndigits] == 8 && s0[ndigits - 1] & 1)) adjust = roundup(s0, ndigits); break; case 2: /* toward +inf */ if (sign == 0) adjust = roundup(s0, ndigits); break; case 3: /* toward -inf */ if (sign != 0) adjust = roundup(s0, ndigits); break; } if (adjust) *decpt += 4; } /* * This procedure converts a double-precision number in IEEE format * into a string of hexadecimal digits and an exponent of 2. Its * behavior is bug-for-bug compatible with dtoa() in mode 2, with the * following exceptions: * * - An ndigits < 0 causes it to use as many digits as necessary to * represent the number exactly. * - The additional xdigs argument should point to either the string * "0123456789ABCDEF" or the string "0123456789abcdef", depending on * which case is desired. * - This routine does not repeat dtoa's mistake of setting decpt * to 9999 in the case of an infinity or NaN. INT_MAX is used * for this purpose instead. * * Note that the C99 standard does not specify what the leading digit * should be for non-zero numbers. For instance, 0x1.3p3 is the same * as 0x2.6p2 is the same as 0x4.cp3. This implementation chooses the * first digit so that subsequent digits are aligned on nibble * boundaries (before rounding). * * Inputs: d, xdigs, ndigits * Outputs: decpt, sign, rve */ char * __hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign, char **rve) { union IEEEd2bits u; char *s, *s0; int bufsize; int impnbit; /* implicit normalization bit */ int pos; int shift; /* for subnormals, # of shifts required to normalize */ int sigfigs; /* number of significant hex figures in result */ u.d = d; *sign = u.bits.sign; switch (fpclassify(d)) { case FP_NORMAL: sigfigs = (DBL_MANT_DIG + 3) / 4; impnbit = 1 << ((DBL_MANT_DIG - 1) % 4); *decpt = u.bits.exp - DBL_BIAS + 1 - ((DBL_MANT_DIG - 1) % 4); break; case FP_ZERO: *decpt = 1; return (nrv_alloc("0", rve, 1)); case FP_SUBNORMAL: /* * The position of the highest-order bit tells us by * how much to adjust the exponent (decpt). The * adjustment is raised to the next nibble boundary * since we will later choose the leftmost hexadecimal * digit so that all subsequent digits align on nibble * boundaries. */ if (u.bits.manh != 0) { pos = log2_32(u.bits.manh); shift = DBL_MANH_SIZE - pos; } else { pos = log2_32(u.bits.manl); shift = DBL_MANH_SIZE + DBL_MANL_SIZE - pos; } sigfigs = (3 + DBL_MANT_DIG - shift) / 4; impnbit = 0; *decpt = DBL_MIN_EXP - ((shift + 3) & ~(4 - 1)); break; case FP_INFINITE: *decpt = INT_MAX; return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1)); case FP_NAN: *decpt = INT_MAX; return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1)); default: abort(); } /* FP_NORMAL or FP_SUBNORMAL */ if (ndigits == 0) /* dtoa() compatibility */ ndigits = 1; /* * For simplicity, we generate all the digits even if the * caller has requested fewer. */ bufsize = (sigfigs > ndigits) ? sigfigs : ndigits; s0 = rv_alloc(bufsize); /* * We work from right to left, first adding any requested zero * padding, then the least significant portion of the * mantissa, followed by the most significant. The buffer is * filled with the byte values 0x0 through 0xf, which are * converted to xdigs[0x0] through xdigs[0xf] after the * rounding phase. */ for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--) *s = 0; for (; s > s0 + sigfigs - (DBL_MANL_SIZE / 4) - 1 && s > s0; s--) { *s = u.bits.manl & 0xf; u.bits.manl >>= 4; } for (; s > s0; s--) { *s = u.bits.manh & 0xf; u.bits.manh >>= 4; } /* * At this point, we have snarfed all the bits in the * mantissa, with the possible exception of the highest-order * (partial) nibble, which is dealt with by the next * statement. That nibble is usually in manh, but it could be * in manl instead for small subnormals. We also tack on the * implicit normalization bit if appropriate. */ *s = u.bits.manh | u.bits.manl | impnbit; /* If ndigits < 0, we are expected to auto-size the precision. */ if (ndigits < 0) { for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--) ; } if (sigfigs > ndigits && s0[ndigits] != 0) dorounding(s0, ndigits, u.bits.sign, decpt); s = s0 + ndigits; if (rve != NULL) *rve = s; *s-- = '\0'; for (; s >= s0; s--) *s = xdigs[(unsigned int)*s]; return (s0); } #if (LDBL_MANT_DIG > DBL_MANT_DIG) /* * This is the long double version of __hdtoa(). * * On architectures that have an explicit integer bit, unnormals and * pseudo-denormals cause problems in the conversion routine, so they * are ``fixed'' by effectively toggling the integer bit. Although * this is not correct behavior, the hardware will not produce these * formats externally. */ char * __hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign, char **rve) { union IEEEl2bits u; char *s, *s0; int bufsize; int impnbit; /* implicit normalization bit */ int pos; int shift; /* for subnormals, # of shifts required to normalize */ int sigfigs; /* number of significant hex figures in result */ u.e = e; *sign = u.bits.sign; switch (fpclassify(e)) { case FP_NORMAL: sigfigs = (LDBL_MANT_DIG + 3) / 4; impnbit = 1 << ((LDBL_MANT_DIG - 1) % 4); *decpt = u.bits.exp - LDBL_BIAS + 1 - ((LDBL_MANT_DIG - 1) % 4); break; case FP_ZERO: *decpt = 1; return (nrv_alloc("0", rve, 1)); case FP_SUBNORMAL: /* * The position of the highest-order bit tells us by * how much to adjust the exponent (decpt). The * adjustment is raised to the next nibble boundary * since we will later choose the leftmost hexadecimal * digit so that all subsequent digits align on nibble * boundaries. */ #ifdef LDBL_IMPLICIT_NBIT /* Don't trust the normalization bit to be off. */ u.bits.manh &= ~(~0ULL << (LDBL_MANH_SIZE - 1)); #endif if (u.bits.manh != 0) { #if LDBL_MANH_SIZE > 32 pos = log2_64(u.bits.manh); #else pos = log2_32(u.bits.manh); #endif shift = LDBL_MANH_SIZE - LDBL_NBIT_ADJ - pos; } else { #if LDBL_MANL_SIZE > 32 pos = log2_64(u.bits.manl); #else pos = log2_32(u.bits.manl); #endif shift = LDBL_MANH_SIZE + LDBL_MANL_SIZE - LDBL_NBIT_ADJ - pos; } sigfigs = (3 + LDBL_MANT_DIG - LDBL_NBIT_ADJ - shift) / 4; *decpt = LDBL_MIN_EXP + LDBL_NBIT_ADJ - ((shift + 3) & ~(4 - 1)); impnbit = 0; break; case FP_INFINITE: *decpt = INT_MAX; return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1)); case FP_NAN: *decpt = INT_MAX; return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1)); default: abort(); } /* FP_NORMAL or FP_SUBNORMAL */ if (ndigits == 0) /* dtoa() compatibility */ ndigits = 1; /* * For simplicity, we generate all the digits even if the * caller has requested fewer. */ bufsize = (sigfigs > ndigits) ? sigfigs : ndigits; s0 = rv_alloc(bufsize); /* * We work from right to left, first adding any requested zero * padding, then the least significant portion of the * mantissa, followed by the most significant. The buffer is * filled with the byte values 0x0 through 0xf, which are * converted to xdigs[0x0] through xdigs[0xf] after the * rounding phase. */ for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--) *s = 0; for (; s > s0 + sigfigs - (LDBL_MANL_SIZE / 4) - 1 && s > s0; s--) { *s = u.bits.manl & 0xf; u.bits.manl >>= 4; } for (; s > s0; s--) { *s = u.bits.manh & 0xf; u.bits.manh >>= 4; } /* * At this point, we have snarfed all the bits in the * mantissa, with the possible exception of the highest-order * (partial) nibble, which is dealt with by the next * statement. That nibble is usually in manh, but it could be * in manl instead for small subnormals. We also tack on the * implicit normalization bit if appropriate. */ *s = u.bits.manh | u.bits.manl | impnbit; /* If ndigits < 0, we are expected to auto-size the precision. */ if (ndigits < 0) { for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--) ; } if (sigfigs > ndigits && s0[ndigits] != 0) dorounding(s0, ndigits, u.bits.sign, decpt); s = s0 + ndigits; if (rve != NULL) *rve = s; *s-- = '\0'; for (; s >= s0; s--) *s = xdigs[(unsigned int)*s]; return (s0); } #else /* (LDBL_MANT_DIG == DBL_MANT_DIG) */ char * __hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign, char **rve) { return (__hdtoa((double)e, xdigs, ndigits, decpt, sign, rve)); } #endif /* (LDBL_MANT_DIG == DBL_MANT_DIG) */